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THE PURPOSE OF TODAY

❖ Give an introduction to polygenic scores (PGS)

❖ How genetic variation shapes phenotypic diversity

❖ Provide an introduction to complex trait genetics

• Monogenic vs multifactorial aetiology

❖ How we can utilize genomic data to elucidate 

molecular genetic aetiology underlying complex 

traits

• Genome-wide association studies (GWAS)

Slides → https://pdrohde.github.io/teachingmaterial/ 

https://pdrohde.github.io/teachingmaterial/


3
WHO AM I?

BCs in biology from AU

MSc in genetics from AU

PhD in statistical and quantitative genetics from AU

Research group leader aiming to understanding the genetic 

architecture of common complex diseases and translating 

genomic discoveries into improved prevention, diagnosis, 

and treatment

A central research priority for the group is advancing 

statistical genomics through AI-driven methods.
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AGENDA

09:00 – 09:15 Welcome

09:15 – 09:45 Session 1: Genetic variation and heredity

09:45 – 10:15 Group work 1: Genetic variation and heredity

10:15 – 10:30 Break

10:30 – 11:00 Session 2: From SNP to GWAS to disease risk

11:00 – 11:40 Group work 2: Construct your own PGS

11:40 – 12:00 Common discussion and evaluation
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IMPLEMENTATION OF PRECISION MEDICINE
E P P OS  [ e v i d e n c e - b a s e d  p r e c i s i o n  p e r s o n a l i s e d  o b j e c t i v e  s u b j e c t i v e ]

Evidence-based Medicine Precision Medicine Personalised Medicine Individualised Medicine

Franks, P. W. et al.. Lancet Diabetes Endocrinol. 11, 822–835 (2023). 
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AGENDA

09:00 – 09:15 Welcome

09:15 – 09:45 Session 1: Genetic variation and heredity

09:45 – 10:15 Group work 1: Genetic variation and heredity

10:15 – 10:30 Break

10:30 – 11:00 Session 2: From SNP to GWAS to disease risk

11:00 – 11:40 Group work 2: Construct your own PGS

11:40 – 12:00 Common discussion and evaluation
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SESSION 1

Complex traits

Genetic variation

Linkage Disequilibrium (LD)

Genetic parameters
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DIFFERENT MODE OF INHERITANCES

❖Monogenic (single gene variant)

❖ Polygenic (many gene variants)

❖Multifactorial (many gene variants plus 

           environment exposures)
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QUANTITATIVE TRAITS
IN  D I FFE R EN T S H AP E S

Continous variation

Categorical variation

Threshold traits
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LIABILITY  ( TH RE S HO LD)  MODEL

Liability model

Only individuals with a liability 

over a certain threshold 

will become affected

The sum of many genetic 

variants with small effect/risk.

Each locus follow Mendelian 

inheritance pattern, although 

the trait does not
Few risk alleles Many risk alleles



Strong effect on phenotype
Weak effect  on phenotype

(or none at all)

GENETIC VARIATION IS LIKE CHILI

Carolina reaper Habanero Lemon Bell pepper

Moderate effect on phenotype
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COMPLEX TRAITS 

are complex…

Complex traits have a genetic 

component and an 

environmental component

The relative genetic 

contribution is called 

heritability.



16
GENETIC 

VARIATION
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GENETIC VARIATION
S IN GL E NUC LE O TID E P OLY MO RP HI SM S ( SN P s)

A common change in a single base pair; ~1/1000 bp

Accounts for ~90% of all variation in the human genome

All (known) SNPs has a unique identifier 

(independent of alleles)

 rsXXX – Ref-SNP cluster ID number 
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MUTATIONS GENERATE 

GENETIC VARIATION
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GENOTYPE TO PHENOTYPE
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GENOMIC COVERAGE

Adapted from Uitterlinden A. (2016) An Introduction to Genome-Wide Association Studies: GWAS for 
Dummies. Seminars in Reproductive Medicine, 34(4): 196-204. 

Time

TaqMan

SNP array

SNP array with imputation

Whole Exome Sequencing (WES)

Whole Genome Sequencing (WGS)

0%

0.1%

0.5%

1%

95%

Genome coverage
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GENOTYPING VS SEQUENCING
AGCTGAAGGAGTGTGGCCAATCTGCCTCCACCTCCCCGCGGACCCCCTACTCTCAGGACCTCCTGCAGCACCCCAAACTGGAAGTGGCCGCTGCAGACCCAAGGACGAGGGGCACGCGGGAGCCG GCAGCCCTAGTGGAGCGGTTGGAGATGTTGAGGTGGGAGGGTCACCC
AGGTGGGGTGAGGCTGGGGTAGGTAGCGGAGTGAACGGCTTCCGAAGCTCTGGGCCGCCCCCAGGTTGGACTAAGCAGGCGCTCTGTCTTCGCCCCCGCCCAGGGTGGGCGTCTCCTGAGGACTCCCCGCCACACCTGACCCGAGACCGCGCGCCCAGCCTAGAACGCTTCCC
CGACCCAGCGTAGGGCCGCCGCGACTGGCGCGCAGGGGGCGGCGGGAGGCCTGGCGAACCCGGGGGCGGGACCAGGCGGGCAAGGCCCGGCTGCCGCAGCGCCGCTCTGCGCGAGGCGGCTCCGC CGCGGCGGAGGGATACGGCGCACCATATATATATCGCGGGGCGC
AGACTCGCGCTCCGGCAGTGGTGCTGGGAGTGTCGTGGACGCCGTGCCGTTACTCGTAGTCAGGCGGCGGCGCAGGCGGCGGCGGCGGCATAGCGCACAGCGCGCCTTAGCAGCAGCAGCAGCAGCAGCGGCATCGGAGGTACCCCCGCCGTCGCAGCCCCCGCGCTGGTG
CAGCCACCCTCGCTCCCTCTGCTCTTCCTCCCTTCGCTCGCACCATGGTAGGTCGGGAGTGGCAAATGCCGGCGTAGCAGCTGCCCGAGATTTCTTCCCAGATTTCTAGTTGTTTTGTTTGTTTTTTGTTTGTTTTTGGTTCTTGGAGGTTTTTCTTTTCTGAGTGTTACGCAGCAGCTG
CGCTTAAAGGAGGTTGCATTTTGGATTTGCATCTCGGCGACCTCTGCCAGGGAGCTTCATTTATTGGTTCCCCTTGGAGCTGGACTTGGTCGTAGGCCGTCCACGGGCAGGGGCTCCGGCCGCAA CTGCAGCGGGGGTTTCTGCATCCAATCCCCCTGCCCCCCGCCCAGCCCCG
CACCCACTGCATCCACTAGCGCCGCACCCGGGCTGCCTGCAGCGCAGCGTTTCGGCCTGGGAGCCGGGCGGGGCCGGGCACTAGACCCCCCCCCCCGGCCCGCCCCTCCCCACCCCGCTTCTCCG CCGGCGCGAAGGTGGCAGGTCGGGCGGGCAGTGGAGAATGAATGGGCT
GGAGCTGGCCGGTGGCGCACATTGTTCCGGCCGGGTGTTGAGGGGCGCAGTCAGCGCCCGCCACCTCCCCACTTTGGCCGGCCCTGCTGGGCGCCCTCCCTCGGTCGCTCTCCCCTCCTTCTTCCCGGGGGGCGCGGCGCGGGCGTGGGCTGGGAAGGAAGGAGCCGGGGAA
GGGTGGGGTTGGGGGCAGGAAGGCGAGGGGTTGGGGGCGGAGAGGGCGGAAGCGGCGGCCGGGCCGCCCTGCGCCCGGGCGGGGCCCTGCGGTGTGGCCGTGGCTTGTTCCTGCCGCTTTCGCAC CCTGCGGCCCCCCACCCAGTGCAGCAGTGCGGGCGGGCGTGAGC
CTCGGTGCACCAGGAGGCACTTCCCGCGGGAGGCGCTGGGCTCGCGCTAATTGGGGCGGGGGGGGGGGGCGGCGGGGGAGGAGGGAACTGGCGCGCGGCTTGGTTTCCATTAGAGACGCAAAGTTTCTGCTCCGGGAGGAGGCGGCGGCGCCGCGGGCTCGTCGCCTGG
GGGAGCAGAAGCGGGTGGGAGGTGCGGGTGGCCTTGGCCTCAGCCCTGGTGCGCGGGGGCCGGGGGTGGTGACCCTCCTGGCCGAGGAGGGGCGGCGTCCAGACGCCCGCTCGGGGGCCGCCTTC CCCCCCACGCCTGCCCCCGGGCACGCGCCCTGCCCGGTCCCTCGCC
CCGCGCCACTTCCAGTCCGCAGAGAGATGCCCTCCACGTTTCTGCTTTCTCTGCAGCCTCTAGATTGCCAGATGCGACTGTGCGCCTCGCTGGGTGTGTTTTCCACAGCCCCTTCCTCCTCGGCGTGCAGGGCTGACATCACCGACTGCGTTTCTGGTTTGGCGGGTGGGGAGATG
GTTCCCCGCAGGGTTCTGGTACACCTTTGCCCCCAGGGCTAGCGCCATTTGGGGGAGGAGGTTTTCGTTGTCGAGAAAGTTGGATGCTCCTGGTAACCCCTCTAACAAGAGAGTTCTGTAGCGAGGTGGGACTGTTCTCCCCATAAGGTGACAGTTTCTCTTGCGAGGTGTGGCA
GCGCTTCCTGTTGTACAAGACAGATGTTGCCTTGGCGTTACGTAAATCATCGTGTCTCCGTCATTTAAAGAAAGCCAATTTTTAGTGATTGAGGTAGAAAGAAAGATCCGTTTATAATTTGTAAAAACAAATTTTCACCCAGAATCAATATATTGGAACACCATTCCTACTGTTAAA
GTTTTCACTTAAGAGTATAAACTTCATCAGCTTTCTATTAGGACTTATTTTGTAATTGGCTTCTTAGGCATCCTTCTTTAAAAGAGAAATCCACGTTAGCTCTCCTTGAGGTCTCGAGTTCCCTCGGCTGGAGGCACAGGTTCAGTGGAGACCAAATAATGCAGGTGAATTACCTTCG
TGGCCATTACTGCCTCCAACGAAGTGTGTTTATTAAGAACAGTTCTTATGTCATTCTTAAGGTAGGTAGGGTTAATACTCTCCAGCAAATTTAGTAGATACTCTTTGCCAGAAAAGAGAGGAGTATATATAGTTTGATAATTATTGTGTAGTTTTCTGTGTACTTAATTTTTGCAGTT
TTGTAACACTTCATTTGTAAGATGGTACCATTTTTTCCTGGCTTCTGAATCATAGGATAGTTTGACCCAGGGCATTAGCCATTGTAATGGTAGGCTTTTAACAAATAACTGCCTAATTTAAAGGATTGGAAAGCATTTGTTACATGGAAATGAAGTTGGTGGCGTACCCAGTTGCTG
TATCTTTATTTTTTCTACTTAATTATTTCTCATAAAATGGATATAAAAGCCTGTTAATCCAACCCAATGCCATTATGTAACGCCAGTTTGGAGATTTCGAGGGCCTGGAGCAGTGCGCAAGGTGCGCTGAAAGCCTGCCCCTGGATGAGATCCTTATCCTGGCTGTGATGGCAGTGG
CAGTGGGCTGGGTCCCTTGTTGAGTGGAAAGGGGGACTGCGGTGTCCATGGTGCAGTAGGTGGCGCTCTTCTGTCTTAGAGCCTGCCGCCACTGCAGCTGGTGCCAAGGGGCCTTCTGCCACTAGAGGTGCCATTTTTCACATGATGAACTTAGCCTAGTTAGATCGCAGAGCA
AGCTGTAAGCCATGGGCCCAGAAAAGAAAACTTGAAGTGAGCAGATGTTGTCACTTCCTTGTAATCCTTTGTTAAAATAGCATAAGGAGTTTTCTTTATTCTATTTACTTTCATTAAATGACCGTGCTACAGGTTTCAAAGGATTTTAAGATTGATTTTTGAAAGATCACAATATTAA
AAGTATAACTGGAAAACCTATGTTGAAATCAACCAAACATGTCGTGGACTGAATGATAACCTTTTCTTTCTTCATATAGGCTGATCAGCTGACCGAAGAACAGATTGCTGGTAAGTTGACAACTCCAAGGAGTCCCCAGAAGGCCAGAACTAGGCACTGACTCAGTTTTGGTGAC
TCCTCTGTTCCTCCCCGCTACAGTCTGGGCAGTTTTCTAAGAATTTATTTAAATAAGAACAGTAAGCAGAAACACTGAGGTCAGATGTTATTCTTGCCAGTACTTTATAGATGAGGTGAAAGGAAGTAAAACTAAGGATGCCCACATGTTAAACTCTGGAGAATTTGACCATGTTTC
ACAATGTGCAAAGTTTGCGTATGATTAATTGTACTGAGCCTGCTACTCAGCGGTTTAGTTTACAATTCTTATGCCATGGGTCTTTCAGTAATCTGCCACGAAAGCTTGTGCTCGCTATCCTAAAATAAATGGAAATGGGTGAATATGAGTGTTAGGACCACTGTAGTAATTGGGAA
GAAAGTTACATTAGTTAAACTCTGTTGCCCAGGCTGGTCTCTAACTCCTGGGCTCAAGCAATCCTCCTGCCTCAGCCTCCTGAGTAGCTGGGACTACAGGCATGTGCCACCACGTCTGGCAGATTTTAGCTTTTTAATATTCCTGGAGGACTTGTTTTGAGACTGTTTCTCGTTAGGA
AACCAGGAATGCTTCTGAAATATTCTAAAAGTCATGTGGAGAGAGTTTACCTGGGAATGTACATTTCTAGTAACCATTTTATTTGTTATGAAACAAGGGATTCTTATGGCTTTAGAAATGTAACAGGAAGGGATTTGAAGGGGGCACATGGACCAATCTTGTCAGATTGGATTTA
GTCCCTTGAACCTGGGAGGCAGGGGTTGTAGTGAGCTGAGATTGCACCACTGCACTCCAATCTCGGTGACAGAGCGAGACTCCATTGTTTAAAAAAAAAAAAAAAGATTGGATTTAGGACTAATT TAAGCATGTTCCAGCTTAGCCGCCTTGAAACCTTTGGGAATATTGTGGTG
TGTGGCACTGTTTATTGGGAGCAGTGTTTGCTTTATGGGCTGCTGTATGAAGGCCAGTCCAACAGGACTATTGTGGTCATTATTTCAGTAGATAAAGACCAGACTTCTGATACGTTGCACAACTTGAATGGCTGGCTTTGGCAAGCCCCCGGCAAGTGTGTATTGTGACTGGGTTG
GATAAAGACATTGATTCTAACGGGTCAACTTTTGTTTTCAGAATTCAAGGAAGCCTTCTCCCTATTTGATAAAGATGGCGATGGCACCATCACAACAAAGGAACTTGGAACTGTCATGAGGTCACTGGGTCAGAACCCAACAGAAGCTGAATTGCAGGATATGATCAATGAAGTG
GATGCTGATGGTAAGAGCTTTAAAACCATGAATGAGGGCCATTGTTGTGTAATTCAAGTTCAGACATGTTACAGGATTGTCTTTCAGGTCCCCAGAGCAAAGCAAATGTGCAAAGATCCTTTCTGTGGTTGCCCCAGGGCCATTGACAATTAAAATAGAAGATGATGGGCCTTGC
GTCCATCCTGCTTAGTGTCTAGAATGTTTTCTGCATGGGATCACTATTGTTTTCTTCCTGCTTGGTGCGACCTAGAGCTCAAATCTATTTTTTTTTTTTTTTTTGGAGACGGAGTCTCGCCCTGTCGCCCAGGCTGGAGTGGCACTGGCGCGATCTCGGCTCACTGCAACCTCTGCCTC
TTGGGTTCCAGCGATTCTCCTGCGTCAGCCTTCTGAGTAGCTGGAATTACAGGCGTGTGTCGCCACGCCCAGTTAGTGTTTTGTATCTTTAGTAGAGATGGGGTTTCACCATGTTGGCCAGGCTGGTCTCAAACTCCTGACCTCGTGATCCGCCCTCCCCGGCCTCCCAAAGTGCTG
GGATTACAGGCGTGAACCACTGCTCCTGGCCGAGCTCAAAGCTTTTATCAACTGGCCCATGAGTCTGCACTGAGTCTTGAGGGGGGAGGTGAAATTAAATAGCCATAGAAAGTGCTTTTTAACAAACTTACTGTGTTTAAAGAGGAGGAGGAACCCCCAGATGAAGTAGGTGAC
GAGCACTCTTAGAAGTTACCATAAAAGTGAGTACAGTGTGAGCTGTAGATGTGTTTGCTGCAGAGGAGCATGTGAGGTTTGGAGGCGGATGTGTGGTGACTCCAGGGGATAGATTTGCAGAACCTAACGGAAAGGGAAGCTGTAAGGTGCAGGGCCAGAGGGAACCAGCAG
TAACCCTGATAGCGGTCTGTCATCTGTTCCTCTCGACTCTACAGCAGCGGACAACAGAACTTTGATTGCTGATTTCCATCAGTAAGCAGGCTTTGAAGCACACTTCCCCACCCCTAAAAAAAAACCACGTATTTTGGTAAATCCTATATATATTCTAATGTACTGTATGACAGTATAG
AACATGATTTTTAAAAGATGAGTTGGGAGGAGAAAAGGATAAAAGAAAAAATAAAAGAAGCATTAAGAATAAACAATTCGGATCTAGATTTTACTTTCTAGATGATTGACTCGAGGGTGGTGTAGTAAAATCGCTTGTCTGGTCACAAACATTTGGCAGCAGAGCTTTTGATTA
GGTTCTTTGACAAAGCCTTCAGCACGTTAGAGTGGTTTTCACTAATAGTGTTTTGGAAAGAAAAGGTTGTCCATAGTTCTCTAGTTTGCTAAGATGATCAGCTACCCAGGAACGTGGAGTAACTTCCTCTTGTTTGTGGGAGCCCCGGGAATCTGTGCCTGGGGAGGGGAGAAGT
CTGTTAGGCTCTTGGATTGTGTGGAAGAAGGAGAAGTTGTGCCAGGCTACAGAATCCTGTGTTTGCACTGAGAAAACAGGATGGTACCTGACCTTCTCTGCATGGCTGTGAGATAGCTTAAAATA ATTTCTTTTGTTTTTGATGAATATGAACAATATCTTAAAATTTTTGAGGCTA
AAAAAGTCTTGAAGGGATCCCTGAGGTATTTTCTTTGAAAGGTACTGGTGAAAATGAGTAACTTAACCTAAGGGTTTTTCTTTCTAATTTTATTTCCATTTAGTTCAATGACACTGTTAGTCTGGAGTGCTTGTCTTTGGGGGTATTCATCTCTTAGTTTTAAAGAGGAGTTGTTTGG
AGTACTGGCCGTAGAACAGATTGTTCTGACAGTTCCCTAAGTGTTACTAGTCTGAGCTGTGAGAATGCTCCTGAGCTTTTCCCTTAATGGGAAATAAAGATACTGAGTTGGAAGAAAACAGGTGG CTAACCATCATAGCGTGGCCAAGAAATGATCCTGGAGAAGACTTGGTAA
GACTTCATGGCCCATGCATGGCATAACAGAATCAATGTTCCTCTCTCATAATCTTTTCTCCTCTGAAACACTTTATACACTTAACCTGCAGCTCAGTTCTAGGCCTTTTTGTGTTACTGCTGTCACTAACCAAGGCAGAGTGAGACCTGAGTGATTTCCCTAACTCAGGGATGGCAGT
CGGGGGCGCTTTCTTCCCTCGGAGTGGAAAGATTCAGCCTGCGGAGTGGTGTATGCTATTTTTCTCTTGAACTGTACAGCCCTTCATGACCCTTCCATGGGCTTGAATCCAGATGTGCAGTTTCCTTTGTATAATTAAATACTATCCTGGGCACTGATGATGAGTTTGAAATTATGT
GAAATTGCCCTGTGAAGTGTTT
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GENOTYPING VS SEQUENCING
AGCTGAAGGAGTGTGGCCAATCTGCCTCCACCTCCCCGCGGACCCCCTACTCTCAGGACCTCCTGCAGCACCCCAAACTGGAAGTGGCCGCTGCAGACCCAAGGACGAGGGGCACGCGGGAGCCG GCAGCCCTAGTGGAGCGGTTGGAGATGTTGAGGTGGGAGGGTCACCC
AGGTGGGGTGAGGCTGGGGTAGGTAGCGGAGTGAACGGCTTCCGAAGCTCTGGGCCGCCCCCAGGTTGGACTAAGCAGGCGCTCTGTCTTCGCCCCCGCCCAGGGTGGGCGTCTCCTGAGGACTCCCCGCCACACCTGACCCGAGACCGCGCGCCCAGCCTAGAACGCTTCCC
CGACCCAGCGTAGGGCCGCCGCGACTGGCGCGCAGGGGGCGGCGGGAGGCCTGGCGAACCCGGGGGCGGGACCAGGCGGGCAAGGCCCGGCTGCCGCAGCGCCGCTCTGCGCGAGGCGGCTCCGC CGCGGCGGAGGGATACGGCGCACCATATATATATCGCGGGGCGC
AGACTCGCGCTCCGGCAGTGGTGCTGGGAGTGTCGTGGACGCCGTGCCGTTACTCGTAGTCAGGCGGCGGCGCAGGCGGCGGCGGCGGCATAGCGCACAGCGCGCCTTAGCAGCAGCAGCAGCAGCAGCGGCATCGGAGGTACCCCCGCCGTCGCAGCCCCCGCGCTGGTG
CAGCCACCCTCGCTCCCTCTGCTCTTCCTCCCTTCGCTCGCACCATGGTAGGTCGGGAGTGGCAAATGCCGGCGTAGCAGCTGCCCGAGATTTCTTCCCAGATTTCTAGTTGTTTTGTTTGTTTTTTGTTTGTTTTTGGTTCTTGGAGGTTTTTCTTTTCTGAGTGTTACGCAGCAGCTG
CGCTTAAAGGAGGTTGCATTTTGGATTTGCATCTCGGCGACCTCTGCCAGGGAGCTTCATTTATTGGTTCCCCTTGGAGCTGGACTTGGTCGTAGGCCGTCCACGGGCAGGGGCTCCGGCCGCAA CTGCAGCGGGGGTTTCTGCATCCAATCCCCCTGCCCCCCGCCCAGCCCCG
CACCCACTGCATCCACTAGCGCCGCACCCGGGCTGCCTGCAGCGCAGCGTTTCGGCCTGGGAGCCGGGCGGGGCCGGGCACTAGACCCCCCCCCCCGGCCCGCCCCTCCCCACCCCGCTTCTCCG CCGGCGCGAAGGTGGCAGGTCGGGCGGGCAGTGGAGAATGAATGGGCT
GGAGCTGGCCGGTGGCGCACATTGTTCCGGCCGGGTGTTGAGGGGCGCAGTCAGCGCCCGCCACCTCCCCACTTTGGCCGGCCCTGCTGGGCGCCCTCCCTCGGTCGCTCTCCCCTCCTTCTTCCCGGGGGGCGCGGCGCGGGCGTGGGCTGGGAAGGAAGGAGCCGGGGAA
GGGTGGGGTTGGGGGCAGGAAGGCGAGGGGTTGGGGGCGGAGAGGGCGGAAGCGGCGGCCGGGCCGCCCTGCGCCCGGGCGGGGCCCTGCGGTGTGGCCGTGGCTTGTTCCTGCCGCTTTCGCAC CCTGCGGCCCCCCACCCAGTGCAGCAGTGCGGGCGGGCGTGAGC
CTCGGTGCACCAGGAGGCACTTCCCGCGGGAGGCGCTGGGCTCGCGCTAATTGGGGCGGGGGGGGGGGGCGGCGGGGGAGGAGGGAACTGGCGCGCGGCTTGGTTTCCATTAGAGACGCAAAGTTTCTGCTCCGGGAGGAGGCGGCGGCGCCGCGGGCTCGTCGCCTGG
GGGAGCAGAAGCGGGTGGGAGGTGCGGGTGGCCTTGGCCTCAGCCCTGGTGCGCGGGGGCCGGGGGTGGTGACCCTCCTGGCCGAGGAGGGGCGGCGTCCAGACGCCCGCTCGGGGGCCGCCTTC CCCCCCACGCCTGCCCCCGGGCACGCGCCCTGCCCGGTCCCTCGCC
CCGCGCCACTTCCAGTCCGCAGAGAGATGCCCTCCACGTTTCTGCTTTCTCTGCAGCCTCTAGATTGCCAGATGCGACTGTGCGCCTCGCTGGGTGTGTTTTCCACAGCCCCTTCCTCCTCGGCGTGCAGGGCTGACATCACCGACTGCGTTTCTGGTTTGGCGGGTGGGGAGATG
GTTCCCCGCAGGGTTCTGGTACACCTTTGCCCCCAGGGCTAGCGCCATTTGGGGGAGGAGGTTTTCGTTGTCGAGAAAGTTGGATGCTCCTGGTAACCCCTCTAACAAGAGAGTTCTGTAGCGAGGTGGGACTGTTCTCCCCATAAGGTGACAGTTTCTCTTGCGAGGTGTGGCA
GCGCTTCCTGTTGTACAAGACAGATGTTGCCTTGGCGTTACGTAAATCATCGTGTCTCCGTCATTTAAAGAAAGCCAATTTTTAGTGATTGAGGTAGAAAGAAAGATCCGTTTATAATTTGTAAAAACAAATTTTCACCCAGAATCAATATATTGGAACACCATTCCTACTGTTAAA
GTTTTCACTTAAGAGTATAAACTTCATCAGCTTTCTATTAGGACTTATTTTGTAATTGGCTTCTTAGGCATCCTTCTTTAAAAGAGAAATCCACGTTAGCTCTCCTTGAGGTCTCGAGTTCCCTCGGCTGGAGGCACAGGTTCAGTGGAGACCAAATAATGCAGGTGAATTACCTTCG
TGGCCATTACTGCCTCCAACGAAGTGTGTTTATTAAGAACAGTTCTTATGTCATTCTTAAGGTAGGTAGGGTTAATACTCTCCAGCAAATTTAGTAGATACTCTTTGCCAGAAAAGAGAGGAGTATATATAGTTTGATAATTATTGTGTAGTTTTCTGTGTACTTAATTTTTGCAGTT
TTGTAACACTTCATTTGTAAGATGGTACCATTTTTTCCTGGCTTCTGAATCATAGGATAGTTTGACCCAGGGCATTAGCCATTGTAATGGTAGGCTTTTAACAAATAACTGCCTAATTTAAAGGATTGGAAAGCATTTGTTACATGGAAATGAAGTTGGTGGCGTACCCAGTTGCTG
TATCTTTATTTTTTCTACTTAATTATTTCTCATAAAATGGATATAAAAGCCTGTTAATCCAACCCAATGCCATTATGTAACGCCAGTTTGGAGATTTCGAGGGCCTGGAGCAGTGCGCAAGGTGCGCTGAAAGCCTGCCCCTGGATGAGATCCTTATCCTGGCTGTGATGGCAGTGG
CAGTGGGCTGGGTCCCTTGTTGAGTGGAAAGGGGGACTGCGGTGTCCATGGTGCAGTAGGTGGCGCTCTTCTGTCTTAGAGCCTGCCGCCACTGCAGCTGGTGCCAAGGGGCCTTCTGCCACTAGAGGTGCCATTTTTCACATGATGAACTTAGCCTAGTTAGATCGCAGAGCA
AGCTGTAAGCCATGGGCCCAGAAAAGAAAACTTGAAGTGAGCAGATGTTGTCACTTCCTTGTAATCCTTTGTTAAAATAGCATAAGGAGTTTTCTTTATTCTATTTACTTTCATTAAATGACCGTGCTACAGGTTTCAAAGGATTTTAAGATTGATTTTTGAAAGATCACAATATTAA
AAGTATAACTGGAAAACCTATGTTGAAATCAACCAAACATGTCGTGGACTGAATGATAACCTTTTCTTTCTTCATATAGGCTGATCAGCTGACCGAAGAACAGATTGCTGGTAAGTTGACAACTCCAAGGAGTCCCCAGAAGGCCAGAACTAGGCACTGACTCAGTTTTGGTGAC
TCCTCTGTTCCTCCCCGCTACAGTCTGGGCAGTTTTCTAAGAATTTATTTAAATAAGAACAGTAAGCAGAAACACTGAGGTCAGATGTTATTCTTGCCAGTACTTTATAGATGAGGTGAAAGGAAGTAAAACTAAGGATGCCCACATGTTAAACTCTGGAGAATTTGACCATGTTTC
ACAATGTGCAAAGTTTGCGTATGATTAATTGTACTGAGCCTGCTACTCAGCGGTTTAGTTTACAATTCTTATGCCATGGGTCTTTCAGTAATCTGCCACGAAAGCTTGTGCTCGCTATCCTAAAATAAATGGAAATGGGTGAATATGAGTGTTAGGACCACTGTAGTAATTGGGAA
GAAAGTTACATTAGTTAAACTCTGTTGCCCAGGCTGGTCTCTAACTCCTGGGCTCAAGCAATCCTCCTGCCTCAGCCTCCTGAGTAGCTGGGACTACAGGCATGTGCCACCACGTCTGGCAGATTTTAGCTTTTTAATATTCCTGGAGGACTTGTTTTGAGACTGTTTCTCGTTAGGA
AACCAGGAATGCTTCTGAAATATTCTAAAAGTCATGTGGAGAGAGTTTACCTGGGAATGTACATTTCTAGTAACCATTTTATTTGTTATGAAACAAGGGATTCTTATGGCTTTAGAAATGTAACAGGAAGGGATTTGAAGGGGGCACATGGACCAATCTTGTCAGATTGGATTTA
GTCCCTTGAACCTGGGAGGCAGGGGTTGTAGTGAGCTGAGATTGCACCACTGCACTCCAATCTCGGTGACAGAGCGAGACTCCATTGTTTAAAAAAAAAAAAAAAGATTGGATTTAGGACTAATT TAAGCATGTTCCAGCTTAGCCGCCTTGAAACCTTTGGGAATATTGTGGTG
TGTGGCACTGTTTATTGGGAGCAGTGTTTGCTTTATGGGCTGCTGTATGAAGGCCAGTCCAACAGGACTATTGTGGTCATTATTTCAGTAGATAAAGACCAGACTTCTGATACGTTGCACAACTTGAATGGCTGGCTTTGGCAAGCCCCCGGCAAGTGTGTATTGTGACTGGGTTG
GATAAAGACATTGATTCTAACGGGTCAACTTTTGTTTTCAGAATTCAAGGAAGCCTTCTCCCTATTTGATAAAGATGGCGATGGCACCATCACAACAAAGGAACTTGGAACTGTCATGAGGTCACTGGGTCAGAACCCAACAGAAGCTGAATTGCAGGATATGATCAATGAAGTG
GATGCTGATGGTAAGAGCTTTAAAACCATGAATGAGGGCCATTGTTGTGTAATTCAAGTTCAGACATGTTACAGGATTGTCTTTCAGGTCCCCAGAGCAAAGCAAATGTGCAAAGATCCTTTCTGTGGTTGCCCCAGGGCCATTGACAATTAAAATAGAAGATGATGGGCCTTGC
GTCCATCCTGCTTAGTGTCTAGAATGTTTTCTGCATGGGATCACTATTGTTTTCTTCCTGCTTGGTGCGACCTAGAGCTCAAATCTATTTTTTTTTTTTTTTTTGGAGACGGAGTCTCGCCCTGTCGCCCAGGCTGGAGTGGCACTGGCGCGATCTCGGCTCACTGCAACCTCTGCCTC
TTGGGTTCCAGCGATTCTCCTGCGTCAGCCTTCTGAGTAGCTGGAATTACAGGCGTGTGTCGCCACGCCCAGTTAGTGTTTTGTATCTTTAGTAGAGATGGGGTTTCACCATGTTGGCCAGGCTGGTCTCAAACTCCTGACCTCGTGATCCGCCCTCCCCGGCCTCCCAAAGTGCTG
GGATTACAGGCGTGAACCACTGCTCCTGGCCGAGCTCAAAGCTTTTATCAACTGGCCCATGAGTCTGCACTGAGTCTTGAGGGGGGAGGTGAAATTAAATAGCCATAGAAAGTGCTTTTTAACAAACTTACTGTGTTTAAAGAGGAGGAGGAACCCCCAGATGAAGTAGGTGAC
GAGCACTCTTAGAAGTTACCATAAAAGTGAGTACAGTGTGAGCTGTAGATGTGTTTGCTGCAGAGGAGCATGTGAGGTTTGGAGGCGGATGTGTGGTGACTCCAGGGGATAGATTTGCAGAACCTAACGGAAAGGGAAGCTGTAAGGTGCAGGGCCAGAGGGAACCAGCAG
TAACCCTGATAGCGGTCTGTCATCTGTTCCTCTCGACTCTACAGCAGCGGACAACAGAACTTTGATTGCTGATTTCCATCAGTAAGCAGGCTTTGAAGCACACTTCCCCACCCCTAAAAAAAAACCACGTATTTTGGTAAATCCTATATATATTCTAATGTACTGTATGACAGTATAG
AACATGATTTTTAAAAGATGAGTTGGGAGGAGAAAAGGATAAAAGAAAAAATAAAAGAAGCATTAAGAATAAACAATTCGGATCTAGATTTTACTTTCTAGATGATTGACTCGAGGGTGGTGTAGTAAAATCGCTTGTCTGGTCACAAACATTTGGCAGCAGAGCTTTTGATTA
GGTTCTTTGACAAAGCCTTCAGCACGTTAGAGTGGTTTTCACTAATAGTGTTTTGGAAAGAAAAGGTTGTCCATAGTTCTCTAGTTTGCTAAGATGATCAGCTACCCAGGAACGTGGAGTAACTTCCTCTTGTTTGTGGGAGCCCCGGGAATCTGTGCCTGGGGAGGGGAGAAGT
CTGTTAGGCTCTTGGATTGTGTGGAAGAAGGAGAAGTTGTGCCAGGCTACAGAATCCTGTGTTTGCACTGAGAAAACAGGATGGTACCTGACCTTCTCTGCATGGCTGTGAGATAGCTTAAAATA ATTTCTTTTGTTTTTGATGAATATGAACAATATCTTAAAATTTTTGAGGCTA
AAAAAGTCTTGAAGGGATCCCTGAGGTATTTTCTTTGAAAGGTACTGGTGAAAATGAGTAACTTAACCTAAGGGTTTTTCTTTCTAATTTTATTTCCATTTAGTTCAATGACACTGTTAGTCTGGAGTGCTTGTCTTTGGGGGTATTCATCTCTTAGTTTTAAAGAGGAGTTGTTTGG
AGTACTGGCCGTAGAACAGATTGTTCTGACAGTTCCCTAAGTGTTACTAGTCTGAGCTGTGAGAATGCTCCTGAGCTTTTCCCTTAATGGGAAATAAAGATACTGAGTTGGAAGAAAACAGGTGG CTAACCATCATAGCGTGGCCAAGAAATGATCCTGGAGAAGACTTGGTAA
GACTTCATGGCCCATGCATGGCATAACAGAATCAATGTTCCTCTCTCATAATCTTTTCTCCTCTGAAACACTTTATACACTTAACCTGCAGCTCAGTTCTAGGCCTTTTTGTGTTACTGCTGTCACTAACCAAGGCAGAGTGAGACCTGAGTGATTTCCCTAACTCAGGGATGGCAGT
CGGGGGCGCTTTCTTCCCTCGGAGTGGAAAGATTCAGCCTGCGGAGTGGTGTATGCTATTTTTCTCTTGAACTGTACAGCCCTTCATGACCCTTCCATGGGCTTGAATCCAGATGTGCAGTTTCCTTTGTATAATTAAATACTATCCTGGGCACTGATGATGAGTTTGAAATTATGT
GAAATTGCCCTGTGAAGTGTTT

Genotyping
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GENOTYPING VS SEQUENCING
AGCTGAAGGAGTGTGGCCAATCTGCCTCCACCTCCCCGCGGACCCCCTACTCTCAGGACCTCCTGCAGCACCCCAAACTGGAAGTGGCCGCTGCAGACCCAAGGACGAGGGGCACGCGGGAGCCG GCAGCCCTAGTGGAGCGGTTGGAGATGTTGAGGTGGGAGGGTCACCC
AGGTGGGGTGAGGCTGGGGTAGGTAGCGGAGTGAACGGCTTCCGAAGCTCTGGGCCGCCCCCAGGTTGGACTAAGCAGGCGCTCTGTCTTCGCCCCCGCCCAGGGTGGGCGTCTCCTGAGGACTCCCCGCCACACCTGACCCGAGACCGCGCGCCCAGCCTAGAACGCTTCCC
CGACCCAGCGTAGGGCCGCCGCGACTGGCGCGCAGGGGGCGGCGGGAGGCCTGGCGAACCCGGGGGCGGGACCAGGCGGGCAAGGCCCGGCTGCCGCAGCGCCGCTCTGCGCGAGGCGGCTCCGC CGCGGCGGAGGGATACGGCGCACCATATATATATCGCGGGGCGC
AGACTCGCGCTCCGGCAGTGGTGCTGGGAGTGTCGTGGACGCCGTGCCGTTACTCGTAGTCAGGCGGCGGCGCAGGCGGCGGCGGCGGCATAGCGCACAGCGCGCCTTAGCAGCAGCAGCAGCAGCAGCGGCATCGGAGGTACCCCCGCCGTCGCAGCCCCCGCGCTGGTG
CAGCCACCCTCGCTCCCTCTGCTCTTCCTCCCTTCGCTCGCACCATGGTAGGTCGGGAGTGGCAAATGCCGGCGTAGCAGCTGCCCGAGATTTCTTCCCAGATTTCTAGTTGTTTTGTTTGTTTTTTGTTTGTTTTTGGTTCTTGGAGGTTTTTCTTTTCTGAGTGTTACGCAGCAGCTG
CGCTTAAAGGAGGTTGCATTTTGGATTTGCATCTCGGCGACCTCTGCCAGGGAGCTTCATTTATTGGTTCCCCTTGGAGCTGGACTTGGTCGTAGGCCGTCCACGGGCAGGGGCTCCGGCCGCAA CTGCAGCGGGGGTTTCTGCATCCAATCCCCCTGCCCCCCGCCCAGCCCCG
CACCCACTGCATCCACTAGCGCCGCACCCGGGCTGCCTGCAGCGCAGCGTTTCGGCCTGGGAGCCGGGCGGGGCCGGGCACTAGACCCCCCCCCCCGGCCCGCCCCTCCCCACCCCGCTTCTCCG CCGGCGCGAAGGTGGCAGGTCGGGCGGGCAGTGGAGAATGAATGGGCT
GGAGCTGGCCGGTGGCGCACATTGTTCCGGCCGGGTGTTGAGGGGCGCAGTCAGCGCCCGCCACCTCCCCACTTTGGCCGGCCCTGCTGGGCGCCCTCCCTCGGTCGCTCTCCCCTCCTTCTTCCCGGGGGGCGCGGCGCGGGCGTGGGCTGGGAAGGAAGGAGCCGGGGAA
GGGTGGGGTTGGGGGCAGGAAGGCGAGGGGTTGGGGGCGGAGAGGGCGGAAGCGGCGGCCGGGCCGCCCTGCGCCCGGGCGGGGCCCTGCGGTGTGGCCGTGGCTTGTTCCTGCCGCTTTCGCAC CCTGCGGCCCCCCACCCAGTGCAGCAGTGCGGGCGGGCGTGAGC
CTCGGTGCACCAGGAGGCACTTCCCGCGGGAGGCGCTGGGCTCGCGCTAATTGGGGCGGGGGGGGGGGGCGGCGGGGGAGGAGGGAACTGGCGCGCGGCTTGGTTTCCATTAGAGACGCAAAGTTTCTGCTCCGGGAGGAGGCGGCGGCGCCGCGGGCTCGTCGCCTGG
GGGAGCAGAAGCGGGTGGGAGGTGCGGGTGGCCTTGGCCTCAGCCCTGGTGCGCGGGGGCCGGGGGTGGTGACCCTCCTGGCCGAGGAGGGGCGGCGTCCAGACGCCCGCTCGGGGGCCGCCTTC CCCCCCACGCCTGCCCCCGGGCACGCGCCCTGCCCGGTCCCTCGCC
CCGCGCCACTTCCAGTCCGCAGAGAGATGCCCTCCACGTTTCTGCTTTCTCTGCAGCCTCTAGATTGCCAGATGCGACTGTGCGCCTCGCTGGGTGTGTTTTCCACAGCCCCTTCCTCCTCGGCGTGCAGGGCTGACATCACCGACTGCGTTTCTGGTTTGGCGGGTGGGGAGATG
GTTCCCCGCAGGGTTCTGGTACACCTTTGCCCCCAGGGCTAGCGCCATTTGGGGGAGGAGGTTTTCGTTGTCGAGAAAGTTGGATGCTCCTGGTAACCCCTCTAACAAGAGAGTTCTGTAGCGAGGTGGGACTGTTCTCCCCATAAGGTGACAGTTTCTCTTGCGAGGTGTGGCA
GCGCTTCCTGTTGTACAAGACAGATGTTGCCTTGGCGTTACGTAAATCATCGTGTCTCCGTCATTTAAAGAAAGCCAATTTTTAGTGATTGAGGTAGAAAGAAAGATCCGTTTATAATTTGTAAAAACAAATTTTCACCCAGAATCAATATATTGGAACACCATTCCTACTGTTAAA
GTTTTCACTTAAGAGTATAAACTTCATCAGCTTTCTATTAGGACTTATTTTGTAATTGGCTTCTTAGGCATCCTTCTTTAAAAGAGAAATCCACGTTAGCTCTCCTTGAGGTCTCGAGTTCCCTCGGCTGGAGGCACAGGTTCAGTGGAGACCAAATAATGCAGGTGAATTACCTTCG
TGGCCATTACTGCCTCCAACGAAGTGTGTTTATTAAGAACAGTTCTTATGTCATTCTTAAGGTAGGTAGGGTTAATACTCTCCAGCAAATTTAGTAGATACTCTTTGCCAGAAAAGAGAGGAGTATATATAGTTTGATAATTATTGTGTAGTTTTCTGTGTACTTAATTTTTGCAGTT
TTGTAACACTTCATTTGTAAGATGGTACCATTTTTTCCTGGCTTCTGAATCATAGGATAGTTTGACCCAGGGCATTAGCCATTGTAATGGTAGGCTTTTAACAAATAACTGCCTAATTTAAAGGATTGGAAAGCATTTGTTACATGGAAATGAAGTTGGTGGCGTACCCAGTTGCTG
TATCTTTATTTTTTCTACTTAATTATTTCTCATAAAATGGATATAAAAGCCTGTTAATCCAACCCAATGCCATTATGTAACGCCAGTTTGGAGATTTCGAGGGCCTGGAGCAGTGCGCAAGGTGCGCTGAAAGCCTGCCCCTGGATGAGATCCTTATCCTGGCTGTGATGGCAGTGG
CAGTGGGCTGGGTCCCTTGTTGAGTGGAAAGGGGGACTGCGGTGTCCATGGTGCAGTAGGTGGCGCTCTTCTGTCTTAGAGCCTGCCGCCACTGCAGCTGGTGCCAAGGGGCCTTCTGCCACTAGAGGTGCCATTTTTCACATGATGAACTTAGCCTAGTTAGATCGCAGAGCA
AGCTGTAAGCCATGGGCCCAGAAAAGAAAACTTGAAGTGAGCAGATGTTGTCACTTCCTTGTAATCCTTTGTTAAAATAGCATAAGGAGTTTTCTTTATTCTATTTACTTTCATTAAATGACCGTGCTACAGGTTTCAAAGGATTTTAAGATTGATTTTTGAAAGATCACAATATTAA
AAGTATAACTGGAAAACCTATGTTGAAATCAACCAAACATGTCGTGGACTGAATGATAACCTTTTCTTTCTTCATATAGGCTGATCAGCTGACCGAAGAACAGATTGCTGGTAAGTTGACAACTCCAAGGAGTCCCCAGAAGGCCAGAACTAGGCACTGACTCAGTTTTGGTGAC
TCCTCTGTTCCTCCCCGCTACAGTCTGGGCAGTTTTCTAAGAATTTATTTAAATAAGAACAGTAAGCAGAAACACTGAGGTCAGATGTTATTCTTGCCAGTACTTTATAGATGAGGTGAAAGGAAGTAAAACTAAGGATGCCCACATGTTAAACTCTGGAGAATTTGACCATGTTTC
ACAATGTGCAAAGTTTGCGTATGATTAATTGTACTGAGCCTGCTACTCAGCGGTTTAGTTTACAATTCTTATGCCATGGGTCTTTCAGTAATCTGCCACGAAAGCTTGTGCTCGCTATCCTAAAATAAATGGAAATGGGTGAATATGAGTGTTAGGACCACTGTAGTAATTGGGAA
GAAAGTTACATTAGTTAAACTCTGTTGCCCAGGCTGGTCTCTAACTCCTGGGCTCAAGCAATCCTCCTGCCTCAGCCTCCTGAGTAGCTGGGACTACAGGCATGTGCCACCACGTCTGGCAGATTTTAGCTTTTTAATATTCCTGGAGGACTTGTTTTGAGACTGTTTCTCGTTAGGA
AACCAGGAATGCTTCTGAAATATTCTAAAAGTCATGTGGAGAGAGTTTACCTGGGAATGTACATTTCTAGTAACCATTTTATTTGTTATGAAACAAGGGATTCTTATGGCTTTAGAAATGTAACAGGAAGGGATTTGAAGGGGGCACATGGACCAATCTTGTCAGATTGGATTTA
GTCCCTTGAACCTGGGAGGCAGGGGTTGTAGTGAGCTGAGATTGCACCACTGCACTCCAATCTCGGTGACAGAGCGAGACTCCATTGTTTAAAAAAAAAAAAAAAGATTGGATTTAGGACTAATT TAAGCATGTTCCAGCTTAGCCGCCTTGAAACCTTTGGGAATATTGTGGTG
TGTGGCACTGTTTATTGGGAGCAGTGTTTGCTTTATGGGCTGCTGTATGAAGGCCAGTCCAACAGGACTATTGTGGTCATTATTTCAGTAGATAAAGACCAGACTTCTGATACGTTGCACAACTTGAATGGCTGGCTTTGGCAAGCCCCCGGCAAGTGTGTATTGTGACTGGGTTG
GATAAAGACATTGATTCTAACGGGTCAACTTTTGTTTTCAGAATTCAAGGAAGCCTTCTCCCTATTTGATAAAGATGGCGATGGCACCATCACAACAAAGGAACTTGGAACTGTCATGAGGTCACTGGGTCAGAACCCAACAGAAGCTGAATTGCAGGATATGATCAATGAAGTG
GATGCTGATGGTAAGAGCTTTAAAACCATGAATGAGGGCCATTGTTGTGTAATTCAAGTTCAGACATGTTACAGGATTGTCTTTCAGGTCCCCAGAGCAAAGCAAATGTGCAAAGATCCTTTCTGTGGTTGCCCCAGGGCCATTGACAATTAAAATAGAAGATGATGGGCCTTGC
GTCCATCCTGCTTAGTGTCTAGAATGTTTTCTGCATGGGATCACTATTGTTTTCTTCCTGCTTGGTGCGACCTAGAGCTCAAATCTATTTTTTTTTTTTTTTTTGGAGACGGAGTCTCGCCCTGTCGCCCAGGCTGGAGTGGCACTGGCGCGATCTCGGCTCACTGCAACCTCTGCCTC
TTGGGTTCCAGCGATTCTCCTGCGTCAGCCTTCTGAGTAGCTGGAATTACAGGCGTGTGTCGCCACGCCCAGTTAGTGTTTTGTATCTTTAGTAGAGATGGGGTTTCACCATGTTGGCCAGGCTGGTCTCAAACTCCTGACCTCGTGATCCGCCCTCCCCGGCCTCCCAAAGTGCTG
GGATTACAGGCGTGAACCACTGCTCCTGGCCGAGCTCAAAGCTTTTATCAACTGGCCCATGAGTCTGCACTGAGTCTTGAGGGGGGAGGTGAAATTAAATAGCCATAGAAAGTGCTTTTTAACAAACTTACTGTGTTTAAAGAGGAGGAGGAACCCCCAGATGAAGTAGGTGAC
GAGCACTCTTAGAAGTTACCATAAAAGTGAGTACAGTGTGAGCTGTAGATGTGTTTGCTGCAGAGGAGCATGTGAGGTTTGGAGGCGGATGTGTGGTGACTCCAGGGGATAGATTTGCAGAACCTAACGGAAAGGGAAGCTGTAAGGTGCAGGGCCAGAGGGAACCAGCAG
TAACCCTGATAGCGGTCTGTCATCTGTTCCTCTCGACTCTACAGCAGCGGACAACAGAACTTTGATTGCTGATTTCCATCAGTAAGCAGGCTTTGAAGCACACTTCCCCACCCCTAAAAAAAAACCACGTATTTTGGTAAATCCTATATATATTCTAATGTACTGTATGACAGTATAG
AACATGATTTTTAAAAGATGAGTTGGGAGGAGAAAAGGATAAAAGAAAAAATAAAAGAAGCATTAAGAATAAACAATTCGGATCTAGATTTTACTTTCTAGATGATTGACTCGAGGGTGGTGTAGTAAAATCGCTTGTCTGGTCACAAACATTTGGCAGCAGAGCTTTTGATTA
GGTTCTTTGACAAAGCCTTCAGCACGTTAGAGTGGTTTTCACTAATAGTGTTTTGGAAAGAAAAGGTTGTCCATAGTTCTCTAGTTTGCTAAGATGATCAGCTACCCAGGAACGTGGAGTAACTTCCTCTTGTTTGTGGGAGCCCCGGGAATCTGTGCCTGGGGAGGGGAGAAGT
CTGTTAGGCTCTTGGATTGTGTGGAAGAAGGAGAAGTTGTGCCAGGCTACAGAATCCTGTGTTTGCACTGAGAAAACAGGATGGTACCTGACCTTCTCTGCATGGCTGTGAGATAGCTTAAAATA ATTTCTTTTGTTTTTGATGAATATGAACAATATCTTAAAATTTTTGAGGCTA
AAAAAGTCTTGAAGGGATCCCTGAGGTATTTTCTTTGAAAGGTACTGGTGAAAATGAGTAACTTAACCTAAGGGTTTTTCTTTCTAATTTTATTTCCATTTAGTTCAATGACACTGTTAGTCTGGAGTGCTTGTCTTTGGGGGTATTCATCTCTTAGTTTTAAAGAGGAGTTGTTTGG
AGTACTGGCCGTAGAACAGATTGTTCTGACAGTTCCCTAAGTGTTACTAGTCTGAGCTGTGAGAATGCTCCTGAGCTTTTCCCTTAATGGGAAATAAAGATACTGAGTTGGAAGAAAACAGGTGG CTAACCATCATAGCGTGGCCAAGAAATGATCCTGGAGAAGACTTGGTAA
GACTTCATGGCCCATGCATGGCATAACAGAATCAATGTTCCTCTCTCATAATCTTTTCTCCTCTGAAACACTTTATACACTTAACCTGCAGCTCAGTTCTAGGCCTTTTTGTGTTACTGCTGTCACTAACCAAGGCAGAGTGAGACCTGAGTGATTTCCCTAACTCAGGGATGGCAGT
CGGGGGCGCTTTCTTCCCTCGGAGTGGAAAGATTCAGCCTGCGGAGTGGTGTATGCTATTTTTCTCTTGAACTGTACAGCCCTTCATGACCCTTCCATGGGCTTGAATCCAGATGTGCAGTTTCCTTTGTATAATTAAATACTATCCTGGGCACTGATGATGAGTTTGAAATTATGT
GAAATTGCCCTGTGAAGTGTTT

Genotyping

WES
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GENOTYPING VS SEQUENCING
AGCTGAAGGAGTGTGGCCAATCTGCCTCCACCTCCCCGCGGACCCCCTACTCTCAGGACCTCCTGCAGCACCCCAAACTGGAAGTGGCCGCTGCAGACCCAAGGACGAGGGGCACGCGGGAGCCG GCAGCCCTAGTGGAGCGGTTGGAGATGTTGAGGTGGGAGGGTCACCC
AGGTGGGGTGAGGCTGGGGTAGGTAGCGGAGTGAACGGCTTCCGAAGCTCTGGGCCGCCCCCAGGTTGGACTAAGCAGGCGCTCTGTCTTCGCCCCCGCCCAGGGTGGGCGTCTCCTGAGGACTCCCCGCCACACCTGACCCGAGACCGCGCGCCCAGCCTAGAACGCTTCCC
CGACCCAGCGTAGGGCCGCCGCGACTGGCGCGCAGGGGGCGGCGGGAGGCCTGGCGAACCCGGGGGCGGGACCAGGCGGGCAAGGCCCGGCTGCCGCAGCGCCGCTCTGCGCGAGGCGGCTCCGC CGCGGCGGAGGGATACGGCGCACCATATATATATCGCGGGGCGC
AGACTCGCGCTCCGGCAGTGGTGCTGGGAGTGTCGTGGACGCCGTGCCGTTACTCGTAGTCAGGCGGCGGCGCAGGCGGCGGCGGCGGCATAGCGCACAGCGCGCCTTAGCAGCAGCAGCAGCAGCAGCGGCATCGGAGGTACCCCCGCCGTCGCAGCCCCCGCGCTGGTG
CAGCCACCCTCGCTCCCTCTGCTCTTCCTCCCTTCGCTCGCACCATGGTAGGTCGGGAGTGGCAAATGCCGGCGTAGCAGCTGCCCGAGATTTCTTCCCAGATTTCTAGTTGTTTTGTTTGTTTTTTGTTTGTTTTTGGTTCTTGGAGGTTTTTCTTTTCTGAGTGTTACGCAGCAGCTG
CGCTTAAAGGAGGTTGCATTTTGGATTTGCATCTCGGCGACCTCTGCCAGGGAGCTTCATTTATTGGTTCCCCTTGGAGCTGGACTTGGTCGTAGGCCGTCCACGGGCAGGGGCTCCGGCCGCAA CTGCAGCGGGGGTTTCTGCATCCAATCCCCCTGCCCCCCGCCCAGCCCCG
CACCCACTGCATCCACTAGCGCCGCACCCGGGCTGCCTGCAGCGCAGCGTTTCGGCCTGGGAGCCGGGCGGGGCCGGGCACTAGACCCCCCCCCCCGGCCCGCCCCTCCCCACCCCGCTTCTCCG CCGGCGCGAAGGTGGCAGGTCGGGCGGGCAGTGGAGAATGAATGGGCT
GGAGCTGGCCGGTGGCGCACATTGTTCCGGCCGGGTGTTGAGGGGCGCAGTCAGCGCCCGCCACCTCCCCACTTTGGCCGGCCCTGCTGGGCGCCCTCCCTCGGTCGCTCTCCCCTCCTTCTTCCCGGGGGGCGCGGCGCGGGCGTGGGCTGGGAAGGAAGGAGCCGGGGAA
GGGTGGGGTTGGGGGCAGGAAGGCGAGGGGTTGGGGGCGGAGAGGGCGGAAGCGGCGGCCGGGCCGCCCTGCGCCCGGGCGGGGCCCTGCGGTGTGGCCGTGGCTTGTTCCTGCCGCTTTCGCAC CCTGCGGCCCCCCACCCAGTGCAGCAGTGCGGGCGGGCGTGAGC
CTCGGTGCACCAGGAGGCACTTCCCGCGGGAGGCGCTGGGCTCGCGCTAATTGGGGCGGGGGGGGGGGGCGGCGGGGGAGGAGGGAACTGGCGCGCGGCTTGGTTTCCATTAGAGACGCAAAGTTTCTGCTCCGGGAGGAGGCGGCGGCGCCGCGGGCTCGTCGCCTGG
GGGAGCAGAAGCGGGTGGGAGGTGCGGGTGGCCTTGGCCTCAGCCCTGGTGCGCGGGGGCCGGGGGTGGTGACCCTCCTGGCCGAGGAGGGGCGGCGTCCAGACGCCCGCTCGGGGGCCGCCTTC CCCCCCACGCCTGCCCCCGGGCACGCGCCCTGCCCGGTCCCTCGCC
CCGCGCCACTTCCAGTCCGCAGAGAGATGCCCTCCACGTTTCTGCTTTCTCTGCAGCCTCTAGATTGCCAGATGCGACTGTGCGCCTCGCTGGGTGTGTTTTCCACAGCCCCTTCCTCCTCGGCGTGCAGGGCTGACATCACCGACTGCGTTTCTGGTTTGGCGGGTGGGGAGATG
GTTCCCCGCAGGGTTCTGGTACACCTTTGCCCCCAGGGCTAGCGCCATTTGGGGGAGGAGGTTTTCGTTGTCGAGAAAGTTGGATGCTCCTGGTAACCCCTCTAACAAGAGAGTTCTGTAGCGAGGTGGGACTGTTCTCCCCATAAGGTGACAGTTTCTCTTGCGAGGTGTGGCA
GCGCTTCCTGTTGTACAAGACAGATGTTGCCTTGGCGTTACGTAAATCATCGTGTCTCCGTCATTTAAAGAAAGCCAATTTTTAGTGATTGAGGTAGAAAGAAAGATCCGTTTATAATTTGTAAAAACAAATTTTCACCCAGAATCAATATATTGGAACACCATTCCTACTGTTAAA
GTTTTCACTTAAGAGTATAAACTTCATCAGCTTTCTATTAGGACTTATTTTGTAATTGGCTTCTTAGGCATCCTTCTTTAAAAGAGAAATCCACGTTAGCTCTCCTTGAGGTCTCGAGTTCCCTCGGCTGGAGGCACAGGTTCAGTGGAGACCAAATAATGCAGGTGAATTACCTTCG
TGGCCATTACTGCCTCCAACGAAGTGTGTTTATTAAGAACAGTTCTTATGTCATTCTTAAGGTAGGTAGGGTTAATACTCTCCAGCAAATTTAGTAGATACTCTTTGCCAGAAAAGAGAGGAGTATATATAGTTTGATAATTATTGTGTAGTTTTCTGTGTACTTAATTTTTGCAGTT
TTGTAACACTTCATTTGTAAGATGGTACCATTTTTTCCTGGCTTCTGAATCATAGGATAGTTTGACCCAGGGCATTAGCCATTGTAATGGTAGGCTTTTAACAAATAACTGCCTAATTTAAAGGATTGGAAAGCATTTGTTACATGGAAATGAAGTTGGTGGCGTACCCAGTTGCTG
TATCTTTATTTTTTCTACTTAATTATTTCTCATAAAATGGATATAAAAGCCTGTTAATCCAACCCAATGCCATTATGTAACGCCAGTTTGGAGATTTCGAGGGCCTGGAGCAGTGCGCAAGGTGCGCTGAAAGCCTGCCCCTGGATGAGATCCTTATCCTGGCTGTGATGGCAGTGG
CAGTGGGCTGGGTCCCTTGTTGAGTGGAAAGGGGGACTGCGGTGTCCATGGTGCAGTAGGTGGCGCTCTTCTGTCTTAGAGCCTGCCGCCACTGCAGCTGGTGCCAAGGGGCCTTCTGCCACTAGAGGTGCCATTTTTCACATGATGAACTTAGCCTAGTTAGATCGCAGAGCA
AGCTGTAAGCCATGGGCCCAGAAAAGAAAACTTGAAGTGAGCAGATGTTGTCACTTCCTTGTAATCCTTTGTTAAAATAGCATAAGGAGTTTTCTTTATTCTATTTACTTTCATTAAATGACCGTGCTACAGGTTTCAAAGGATTTTAAGATTGATTTTTGAAAGATCACAATATTAA
AAGTATAACTGGAAAACCTATGTTGAAATCAACCAAACATGTCGTGGACTGAATGATAACCTTTTCTTTCTTCATATAGGCTGATCAGCTGACCGAAGAACAGATTGCTGGTAAGTTGACAACTCCAAGGAGTCCCCAGAAGGCCAGAACTAGGCACTGACTCAGTTTTGGTGAC
TCCTCTGTTCCTCCCCGCTACAGTCTGGGCAGTTTTCTAAGAATTTATTTAAATAAGAACAGTAAGCAGAAACACTGAGGTCAGATGTTATTCTTGCCAGTACTTTATAGATGAGGTGAAAGGAAGTAAAACTAAGGATGCCCACATGTTAAACTCTGGAGAATTTGACCATGTTTC
ACAATGTGCAAAGTTTGCGTATGATTAATTGTACTGAGCCTGCTACTCAGCGGTTTAGTTTACAATTCTTATGCCATGGGTCTTTCAGTAATCTGCCACGAAAGCTTGTGCTCGCTATCCTAAAATAAATGGAAATGGGTGAATATGAGTGTTAGGACCACTGTAGTAATTGGGAA
GAAAGTTACATTAGTTAAACTCTGTTGCCCAGGCTGGTCTCTAACTCCTGGGCTCAAGCAATCCTCCTGCCTCAGCCTCCTGAGTAGCTGGGACTACAGGCATGTGCCACCACGTCTGGCAGATTTTAGCTTTTTAATATTCCTGGAGGACTTGTTTTGAGACTGTTTCTCGTTAGGA
AACCAGGAATGCTTCTGAAATATTCTAAAAGTCATGTGGAGAGAGTTTACCTGGGAATGTACATTTCTAGTAACCATTTTATTTGTTATGAAACAAGGGATTCTTATGGCTTTAGAAATGTAACAGGAAGGGATTTGAAGGGGGCACATGGACCAATCTTGTCAGATTGGATTTA
GTCCCTTGAACCTGGGAGGCAGGGGTTGTAGTGAGCTGAGATTGCACCACTGCACTCCAATCTCGGTGACAGAGCGAGACTCCATTGTTTAAAAAAAAAAAAAAAGATTGGATTTAGGACTAATT TAAGCATGTTCCAGCTTAGCCGCCTTGAAACCTTTGGGAATATTGTGGTG
TGTGGCACTGTTTATTGGGAGCAGTGTTTGCTTTATGGGCTGCTGTATGAAGGCCAGTCCAACAGGACTATTGTGGTCATTATTTCAGTAGATAAAGACCAGACTTCTGATACGTTGCACAACTTGAATGGCTGGCTTTGGCAAGCCCCCGGCAAGTGTGTATTGTGACTGGGTTG
GATAAAGACATTGATTCTAACGGGTCAACTTTTGTTTTCAGAATTCAAGGAAGCCTTCTCCCTATTTGATAAAGATGGCGATGGCACCATCACAACAAAGGAACTTGGAACTGTCATGAGGTCACTGGGTCAGAACCCAACAGAAGCTGAATTGCAGGATATGATCAATGAAGTG
GATGCTGATGGTAAGAGCTTTAAAACCATGAATGAGGGCCATTGTTGTGTAATTCAAGTTCAGACATGTTACAGGATTGTCTTTCAGGTCCCCAGAGCAAAGCAAATGTGCAAAGATCCTTTCTGTGGTTGCCCCAGGGCCATTGACAATTAAAATAGAAGATGATGGGCCTTGC
GTCCATCCTGCTTAGTGTCTAGAATGTTTTCTGCATGGGATCACTATTGTTTTCTTCCTGCTTGGTGCGACCTAGAGCTCAAATCTATTTTTTTTTTTTTTTTTGGAGACGGAGTCTCGCCCTGTCGCCCAGGCTGGAGTGGCACTGGCGCGATCTCGGCTCACTGCAACCTCTGCCTC
TTGGGTTCCAGCGATTCTCCTGCGTCAGCCTTCTGAGTAGCTGGAATTACAGGCGTGTGTCGCCACGCCCAGTTAGTGTTTTGTATCTTTAGTAGAGATGGGGTTTCACCATGTTGGCCAGGCTGGTCTCAAACTCCTGACCTCGTGATCCGCCCTCCCCGGCCTCCCAAAGTGCTG
GGATTACAGGCGTGAACCACTGCTCCTGGCCGAGCTCAAAGCTTTTATCAACTGGCCCATGAGTCTGCACTGAGTCTTGAGGGGGGAGGTGAAATTAAATAGCCATAGAAAGTGCTTTTTAACAAACTTACTGTGTTTAAAGAGGAGGAGGAACCCCCAGATGAAGTAGGTGAC
GAGCACTCTTAGAAGTTACCATAAAAGTGAGTACAGTGTGAGCTGTAGATGTGTTTGCTGCAGAGGAGCATGTGAGGTTTGGAGGCGGATGTGTGGTGACTCCAGGGGATAGATTTGCAGAACCTAACGGAAAGGGAAGCTGTAAGGTGCAGGGCCAGAGGGAACCAGCAG
TAACCCTGATAGCGGTCTGTCATCTGTTCCTCTCGACTCTACAGCAGCGGACAACAGAACTTTGATTGCTGATTTCCATCAGTAAGCAGGCTTTGAAGCACACTTCCCCACCCCTAAAAAAAAACCACGTATTTTGGTAAATCCTATATATATTCTAATGTACTGTATGACAGTATAG
AACATGATTTTTAAAAGATGAGTTGGGAGGAGAAAAGGATAAAAGAAAAAATAAAAGAAGCATTAAGAATAAACAATTCGGATCTAGATTTTACTTTCTAGATGATTGACTCGAGGGTGGTGTAGTAAAATCGCTTGTCTGGTCACAAACATTTGGCAGCAGAGCTTTTGATTA
GGTTCTTTGACAAAGCCTTCAGCACGTTAGAGTGGTTTTCACTAATAGTGTTTTGGAAAGAAAAGGTTGTCCATAGTTCTCTAGTTTGCTAAGATGATCAGCTACCCAGGAACGTGGAGTAACTTCCTCTTGTTTGTGGGAGCCCCGGGAATCTGTGCCTGGGGAGGGGAGAAGT
CTGTTAGGCTCTTGGATTGTGTGGAAGAAGGAGAAGTTGTGCCAGGCTACAGAATCCTGTGTTTGCACTGAGAAAACAGGATGGTACCTGACCTTCTCTGCATGGCTGTGAGATAGCTTAAAATA ATTTCTTTTGTTTTTGATGAATATGAACAATATCTTAAAATTTTTGAGGCTA
AAAAAGTCTTGAAGGGATCCCTGAGGTATTTTCTTTGAAAGGTACTGGTGAAAATGAGTAACTTAACCTAAGGGTTTTTCTTTCTAATTTTATTTCCATTTAGTTCAATGACACTGTTAGTCTGGAGTGCTTGTCTTTGGGGGTATTCATCTCTTAGTTTTAAAGAGGAGTTGTTTGG
AGTACTGGCCGTAGAACAGATTGTTCTGACAGTTCCCTAAGTGTTACTAGTCTGAGCTGTGAGAATGCTCCTGAGCTTTTCCCTTAATGGGAAATAAAGATACTGAGTTGGAAGAAAACAGGTGG CTAACCATCATAGCGTGGCCAAGAAATGATCCTGGAGAAGACTTGGTAA
GACTTCATGGCCCATGCATGGCATAACAGAATCAATGTTCCTCTCTCATAATCTTTTCTCCTCTGAAACACTTTATACACTTAACCTGCAGCTCAGTTCTAGGCCTTTTTGTGTTACTGCTGTCACTAACCAAGGCAGAGTGAGACCTGAGTGATTTCCCTAACTCAGGGATGGCAGT
CGGGGGCGCTTTCTTCCCTCGGAGTGGAAAGATTCAGCCTGCGGAGTGGTGTATGCTATTTTTCTCTTGAACTGTACAGCCCTTCATGACCCTTCCATGGGCTTGAATCCAGATGTGCAGTTTCCTTTGTATAATTAAATACTATCCTGGGCACTGATGATGAGTTTGAAATTATGT
GAAATTGCCCTGTGAAGTGTTT

Genotyping

WES

WGS
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WHICH TECHNOLOGY?

The choice of technology fir detecting single nucleotide 

polymorphisms (SNPs) depends upon the application.

For GWAS / PGS we use ‘SNP array with imputation’
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GENOTYPING

For GWAS/PGS we don’t need to analyse all 3 billion positions in 

the human genome.

Instead, we can measure about 500,000 to 1 million genetic 

variants that act as markers across the genome.

Because nearby variants are often inherited together, we can use 

these markers to predict (“impute”) millions of additional common 

variants — up to about 10 million in total.
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WHY DON’T WE NEED TO TEST EVERY 

VARIANT?

Linked train wagons

Linked loci

(Physical proximity)

The human genome has about 3 billion positions.

But many variants are inherited together.

Variants that tend to be passed on together are said to be in 
linkage disequilibrium (LD).
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WHAT IS LD?

A B

a b

A

a

b

B

If there is random relationship among alleles at the two loci 

then the frequency of the haplotypes will be the product of the 

frequencies of the two alleles:

P(AB)=P(A)xP(B) 

P(Ab)=P(A)xP(b) 

P(aB)=P(a)xP(B) 

P(ab)=P(a)xP(b) 
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WHAT IS LD?

When the association between alleles at two loci is non-

random they are said to be in linkage disequilibrium

The degree of LD can be measure in several ways – the 

simples one is:
𝑫 = 𝑷𝑨𝑩 − 𝑷𝑨𝑷𝑩

If D=0, no LD, if D>0 LD

Decay with physical distance

r² = 1 → perfect correlation (completely linked)

r² = 0 → no correlation (completely independent)

LD is just a way of describing how strongly two variants are correlated.

In practice, we use r² to say how well one variant predicts another
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IMPUTATION
US I NG  HA PL OT Y PE S

A T C

G C A

The true haplotypes

This individual has 

inherited a chromosome 
with alleles A-T-C from one 

parent, and G-C-A from the 

other parent

We observe only the genotypes

A/G T/C C/A

Genotype data does not 

carry information about 

the haplotypes.

We do not know whether 
A at SNP1 is coming from 
the same parent as T or C 

at SNP2

Different haplotypes

A C A

A C C

A T A

A C A

G C A

G C C

G T A

G T C

Phasing = estimate the most 

likely haplotypes
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IMPUTATION

From a sequencing study

Genotypes
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GENETIC 

PARAMETERS

Separate VG and VE

Heritability

Genetic correlation
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COMPLEX TRAITS 

are complex…

Complex traits have a genetic 

component and an 

environmental component

The relative genetic 

contribution is called 

heritability.

VG / (VG+VE)

Thus, set a limits for 

the genetic predictor
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MULTIFACTORIAL TRAITS

Multifactorial traits = polygenic effect + environmental effect

VP = VG + VE

H2= VG / (VG +VE)

External effects that modulates the

phenotypic value.

… or things that we cannot explain

many genes/alleles

40%

60%

Vg Ve



P A G E
3 6

GENETIC CORRELATION

The genetic correlation refers to the genetic link between two traits, which can help elucidate the shared 

biological pathways and/or causal relationships between them.

Genetic correlation quantifies how much two traits share in 
their genetic basis — not because of environment or chance, 
but because the same DNA variants affect both.
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Complex traits

Most diseases are influenced by many genetic and 

environmental factors — understanding their 

complexity helps us predict risk more accurately

Genetic variation

Individual differences in DNA underlie why people 

respond differently to diseases and treatments.

Haplotypes and LD

 Patterns of correlated variants (LD) allow us to identify 

genetic regions associated with disease risk even 

when the causal variant is unknown.

Genetic parameters

Measures like heritability and genetic correlation help 

quantify how much of disease risk is due to genetics 

and how traits are biologically connected.
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GROUP WORK

PART 1  (15 min)
Make 3 groups

❑ Each group work with one exercise
❑ Explain the concepts & discuss how 

these concepts relates to identification 
of genetic risk variants

PART 2 (15 min) 
We make 3 new groups with 1 person from 
each of the previous groups

❑ Present key messenges from each 
exercise

1

3

2
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BREAK
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AGENDA

09:00 – 09:15 Welcome

09:15 – 09:45 Session 1: Genetic variation and heredity

09:45 – 10:15 Group work 1: Genetic variation and heredity

10:15 – 10:30 Break

10:30 – 11:00 Session 2: From SNP to GWAS to disease risk

11:00 – 11:40 Group work 2: Construct your own PGS

11:40 – 12:00 Common discussion and evaluation
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Genetic associations

Polygenic score
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Each genetic variant is both 
necessary and sufficient

Mutation

Each genetic variant is neither 
necessary nor sufficient

+

Monogenic disorders Common complex disorders

Linkage analysis

(pedigree)

Association study

(unrelated population)

What does association mean
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ASSOCIATION

An association defines a relationship between two entity objects based on common attributes.

Is there an association between exposure and outcome?
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ASSOCIATION NOT CAUSATION

Matthews, R. (2000), Storks Deliver Babies (p= 0.008). 
Teaching Statistics, 22: 36-38.

0 5000 15000 25000

0

500

1000

1500

Number of stork breeding pairs
B

ir
th

 r
a
te

 (
1

0
0

0
s
/y

e
a

r)

Coefficients:
             Estimate Std. Error t value Pr(>|t|)   
(Intercept) 2.250e+02  9.356e+01   2.405   0.0295 * 
Storks      2.879e-02  9.402e-03   3.063   0.0079 **
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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IDENTIFY RISK VARIANTS
G E NO ME- WI DE  AS S O CIATIO N S TUD Y ( G WA S )
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No association Association
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P val = <2e-16 

Systematic hypothesis-free scanning of all 

common genetic variants
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MANHATTAN PLOT For each variant, plot the –log10(P-value) as 

function of chromosomal position.

P=0.05 → -log10(0.05) = 1.3
P=0.001 → -log10(0.001) = 3
P=0.000000005 → -log10(0.000000005) = 8.3
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HYPOTHESIS TESTING

Null hypothesis (H0) is true Null hypothesis (H0) is false

Reject null hypothesis (H0) Type I error 𝛼
False positive

Correct outcome

True positive

Accecpt null hypothesis (H0) Correct outcome

True negative

Type II error 𝛽
False negative

The probability (P) of making a type I error is denoted by 𝛼; we reject the null hypothesis if the inferred P 

value is less than the significance level (𝛼=0.05). I.e., the probability of rejecting the null hypothesis when 

should be accepted.

Why multiple testing correction? If we test 500,000 SNPs, then by chance we expect 25.000 SNPs to be 
significant (if 𝛼=0.05) → i.e., 25.000 false-positive associations.

One solution is to correct for number of tests performed; Bonferroni correction; 

     Corrected P-value = 𝑃 × 𝑛𝑡𝑒𝑠𝑡𝑠 ≤ 0.05 OR 
𝛼

𝑛𝑡𝑒𝑠𝑡𝑠
=new significance threshold



P A G E
4 8

MANHATTAN PLOT For each variant, plot the –log10(P-value) as 

function of chromosomal position.

P=0.05 → -log10(0.05) = 1.3
P=0.001 → -log10(0.001) = 3
P=0.000000005 → -log10(0.000000005) = 8.3Genome-wide significance level?

-adjust for no. of independent statistical tests 

(1,000,000 independent genomic regions [LD])
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POWER IS EVERYTHING IN GWAS
the probability of detecting an effect, if there is 
a true effect present to detect

Has high heritabilitet (h2= 0.85)
The population prevalence is 1% 
Emerge in late teens 
Molecular aetiology is unknown

Schizophrenia

6000 people
0 genes

depends among otherthings on sample size

20.000 people
5 genes

50.000 people
62 genes

110.000 people
108 genes !

320.000 people
287 genes !



P A G E
5 0

GENETIC RISK FOR 

LUNG CANCER?

A genetic studie of lung cancer (LC, 1989 cases and 2625 

controls) found a nicotine receptor (CHRNA3/5) to be 

associated with the risk of developing lung cancer.

Does that then mean that CHRNA3/5 is a risk loci for LC?

Risk loci for nicotine addition → addicted to smoking →  

increase LC risk



51PREDICTING DISEASE 
RISK FROM GENETIC 
DATA

A “polygenic score” is one way by which people 

can learn about their risk of developing a 

disease, based on the total number of changes 

(i.e., SNPs) related to the disease (NHI)
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DIFFERENT NAMES 
BU T T HE  S AM E

Polygenic risk score (PRS)

Polygenic score (PGS)

Genetic score (GS)

Genetic risk score (GRS)

Genetic value

Genetic liability

Breeding value

…
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THE INHERENT DISEASE RISK
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THE INHERENT DISEASE RISK

3

3

2

2

4

2

2

2

Variation in the 

number of risk 

variants 

→

Polygenic score 
(PGS)
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WHAT IS A PGS?
A RE LATIV E  R IS K

SNP1 A  G

SNP2 T   T 

SNP3 A C

SNP4 T   A

SNP5 C   C

PGS =7

How do we find the ’orange’ alleles?
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WHAT IS A PGS?

“A PGS combines information from large 

numbers of markers across the genome 

(hundreds to millions) to give a single 

numerical score for an individual’s risk for 

developing a specific disease on the basis of 

the DNA variants they have inherited.“ 𝑃𝐺𝑆 =෍𝑋𝑖𝑏𝑖

The genotype of the individual for SNP i

(0, 1, 2 – counting the number of the alternative allele)

AA = 0
Aa = 1
aa = 2

b is the slope (effect 

size) from reggresion

The effect size of the SNP – 

obtain from the GWAS
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HOW TO COMPUTE A ( s i m p l e ) PGS?
𝑃𝐺𝑆 =෍𝑋𝑖𝑏𝑖

PGS =
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A LARGE PALETTE OF PGS METHODS

Ma, Y., & Zhou, X. (2021). Trends in Genetics, 37(11), 995–1011. 

𝑃𝐺𝑆 =෍𝑋𝑖𝑏𝑖
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WHY DIFFERENT PGS 

SCORING METHODS?

Complex traits have different underlying genetic architectures

❖ some are influenced by <100 genetic loci

❖ some are influenced by >1000 genetic loci

❖ some loci have very small effects

❖ some loci have moderate effects

❖ correlation structure among loci (linkage disequilibrium)

The different scoring algorithms attempts to account for this.
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A LARGE PALETTE OF PGS METHODS

Ma, Y., & Zhou, X. (2021). Trends in Genetics, 37(11), 995–1011. 

𝑃𝐺𝑆 =෍𝑋𝑖𝑏𝑖
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CLUMPING AND THRESHOLDING (C+T)

SNP b p

1 0.21 0.005

2 0.22 0.0048

3 0.25 0.0003

4 0.1 0.04

5 0.05 0.15

6 0.02 0.49

7 0.03 0.87

8 0.12 0.003

9 0.14 0.0034

10 0.18 0.0004

11 0.21 0.00003

12 0.12 0.15

13 0.14 0.12

14 0.03 0.84

15 0.02 0.32

1: Sort by P-value 2: Compute LD and select 

variants based of thresholds

SNP b p

11 0.21 0.00003

3 0.25 0.0003

10 0.18 0.0004

8 0.12 0.003

9 0.14 0.0034

2 0.22 0.0048

1 0.21 0.005

4 0.1 0.04

13 0.14 0.12

5 0.05 0.15

12 0.12 0.15

15 0.02 0.32

6 0.02 0.49

14 0.03 0.84

7 0.03 0.87

SNP b p r2

11 0.21 0.00003

3 0.25 0.0003 0.96

10 0.18 0.0004 0.93

8 0.12 0.003 0.88

9 0.14 0.0034 0.74

2 0.22 0.0048 0.4

1 0.21 0.005 0.03

4 0.1 0.04 0.04

13 0.14 0.12 0.05

5 0.05 0.15 0.03

12 0.12 0.15 0.04

15 0.02 0.32 0.01

6 0.02 0.49 0.01

14 0.03 0.84 0.01

7 0.03 0.87 0.01

0: Set LD (=0.8) and P 

values (0.01)

Have LD>r2 – ignore those

1st variant in LD-pair
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CLUMPING AND THRESHOLDING (C+T)

SNP b p

1 0.21 0.005

2 0.22 0.0048

3 0.25 0.0003

4 0.1 0.04

5 0.05 0.15

6 0.02 0.49

7 0.03 0.87

8 0.12 0.003

9 0.14 0.0034

10 0.18 0.0004

11 0.21 0.00003

12 0.12 0.15

13 0.14 0.12

14 0.03 0.84

15 0.02 0.32

1: Sort by P-value 2: Compute LD and select 

variants based of thresholds

SNP b p

11 0.21 0.00003

3 0.25 0.0003

10 0.18 0.0004

8 0.12 0.003

9 0.14 0.0034

2 0.22 0.0048

1 0.21 0.005

4 0.1 0.04

13 0.14 0.12

5 0.05 0.15

12 0.12 0.15

15 0.02 0.32

6 0.02 0.49

14 0.03 0.84

7 0.03 0.87

SNP b p r2

11 0.21 0.00003

3 0.25 0.0003

10 0.18 0.0004

8 0.12 0.003

9 0.14 0.0034

2 0.22 0.0048 0.98

1 0.21 0.005 0.96

4 0.1 0.04 0.96

13 0.14 0.12 0.52

5 0.05 0.15 0.34

12 0.12 0.15 0.10

15 0.02 0.32 0.04

6 0.02 0.49 0.01

14 0.03 0.84 0.01

7 0.03 0.87 0.01

0: Set LD (=0.8) and P 

values (0.01)

1st variant in LD-pair

Have LD>r2 – ignore those
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CLUMPING AND THRESHOLDING (C+T)

SNP b p

1 0.21 0.005

2 0.22 0.0048

3 0.25 0.0003

4 0.1 0.04

5 0.05 0.15

6 0.02 0.49

7 0.03 0.87

8 0.12 0.003

9 0.14 0.0034

10 0.18 0.0004

11 0.21 0.00003

12 0.12 0.15

13 0.14 0.12

14 0.03 0.84

15 0.02 0.32

1: Sort by P-value 2: Compute LD and select 

variants based of thresholds

SNP b p

11 0.21 0.00003

3 0.25 0.0003

10 0.18 0.0004

8 0.12 0.003

9 0.14 0.0034

2 0.22 0.0048

1 0.21 0.005

4 0.1 0.04

13 0.14 0.12

5 0.05 0.15

12 0.12 0.15

15 0.02 0.32

6 0.02 0.49

14 0.03 0.84

7 0.03 0.87

SNP b p r2

11 0.21 0.00003

3 0.25 0.0003

10 0.18 0.0004

8 0.12 0.003

9 0.14 0.0034

2 0.22 0.0048

1 0.21 0.005

4 0.1 0.04

13 0.14 0.12

5 0.05 0.15 0.86

12 0.12 0.15 0.82

15 0.02 0.32 0.81

6 0.02 0.49 0.85

14 0.03 0.84 0.85

7 0.03 0.87 0.81

0: Set LD (=0.8) and P 

values (0.01)

1st variant in LD-pair

Have LD>r2 – ignore those
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CLUMPING AND THRESHOLDING (C+T)

SNP b p

1 0.21 0.005

2 0.22 0.0048

3 0.25 0.0003

4 0.1 0.04

5 0.05 0.15

6 0.02 0.49

7 0.03 0.87

8 0.12 0.003

9 0.14 0.0034

10 0.18 0.0004

11 0.21 0.00003

12 0.12 0.15

13 0.14 0.12

14 0.03 0.84

15 0.02 0.32

1: Sort by P-value 2: Compute LD and select 

variants based on LD

SNP b p

11 0.21 0.00003

3 0.25 0.0003

10 0.18 0.0004

8 0.12 0.003

9 0.14 0.0034

2 0.22 0.0048

1 0.21 0.005

4 0.1 0.04

13 0.14 0.12

5 0.05 0.15

12 0.12 0.15

15 0.02 0.32

6 0.02 0.49

14 0.03 0.84

7 0.03 0.87

SNP b p r2

11 0.21 0.00003

3 0.25 0.0003

10 0.18 0.0004

8 0.12 0.003

9 0.14 0.0034

2 0.22 0.0048

1 0.21 0.005

4 0.1 0.04

13 0.14 0.12

5 0.05 0.15

12 0.12 0.15

15 0.02 0.32

6 0.02 0.49

14 0.03 0.84

7 0.03 0.87

0: Set LD (=0.8) and P 

values (0.01)

3: Compute PGS based on 

effect sizes (b) and P-values

𝑃𝐺𝑆 =෍𝑋𝑖𝑏𝑖

= 𝑿11 × 0.21 + 𝑿9 × 0.14
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CLUMPING AND THRESHOLDING (C+T)

Repeat for other P-value 

cutoffs (and LD values)

How does the PGS associate 

with the disease

𝑦𝑡𝑟𝑎𝑖𝑡 = 𝑃𝐺𝑆 + 𝜀

Finding optimal r2 and P-cutoff 

and apply in second cohort
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CLUMPING AND THRESHOLDING (C+T)

Prive et al (2019) Am J Hum Gen, 105:1213–1221 
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WHAT DO YOU NEED?

1. A large well-powered 

GWAS for your trait of 

interest

2. An independent cohort 

that has been genotyped

(3. That some individuals 

in the cohort has the 

phenotype)
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A LARGE PALETTE OF PGS METHODS

Ma, Y., & Zhou, X. (2021). Trends in Genetics, 37(11), 995–1011. 

-- Require individual level data -- -- Require summary data --

(can be tricky because of GDPR)
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COMMONLY USED METHODS
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SESSION 2

Genetic associations

By linking specific genetic variants to traits or 

diseases, we can identify biological pathways and 

potential drug targets.

Polygenic score

Combining information from thousands of variants 

allows us to estimate an individual’s genetic risk — 

a key step toward personalised prevention and 

treatment.
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GROUP WORK

1

3

2
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AGENDA

09:00 – 09:15 Welcome

09:15 – 09:45 Session 1: Genetic variation and heredity

09:45 – 10:15 Group work 1: Genetic variation and heredity

10:15 – 10:30 Break

10:30 – 11:00 Session 2: From SNP to GWAS to disease risk

11:00 – 11:40 Group work 2: Construct your own PGS

11:40 – 12:00 Common discussion and evaluation



73
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EVALUATE POLYGENIC 

PROFILES

𝑦 = 𝑋𝑏 + 𝑍𝑐 + 𝑒

𝑦 = phenotype; 𝑋 = PGS; 𝑍 = covariates

Compare variance explained from the full model (with X+covariates) 

compared to a reduced model (covariates only)

Variance explained (R2) for quantitative traits, and Nagelkerke’s R2 for 

binary traits (however, NagR2 is biased with disease prevalence!)

The International Schizophrenia Consortium (2009) Nature, 460
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EVALUATE POLYGENIC 

PROFILES

Area Under Receiver Operator Characteristic Curve (AUC) 

Well established measure of validity of tests for classifier diseased 

vs non-diseased individuals

• Nice property – independent to proportion of cases and controls 

in sample

• Range 0.5 to 1

• 0.5 the score has no predictive value

• Probability that a randomly selected case has a score 

higher than a randomly selected control

From Wray N

Rank individuals on score from highest ranked to lowest
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EVALUATE POLYGENIC 

PROFILES

Odds ratio (OR) 

Cut the distribution into deciles

Each decile will include both cases and controls

Odds of being a case in each decile

Odds ratio for each decile compared to the first decile
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INTERPRETABILITY & 

RISK COMMUNICATION

The risk associated with the PGS is a relative risk

People have suggested methods to convert relative PGS risk to absolute 

risks (https://opain.github.io/GenoPred/PRS_to_Abs_tool.html)

The relative risk may sound high, but the absolute risk is low

Hard to use meaningfully in clinical decisions without baseline risk

Effective for population stratification, less so for individual 

prediction

Lack of population transferability

Pain et al 2022, EJHG, 3:339-348

https://opain.github.io/GenoPred/PRS_to_Abs_tool.html
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LACK OF TRANSFERABILITY

Ding et al 2022, Nature, 618
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