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THE PURPOSE OF TODAY

+» Give an introduction to polygenic scores (PGS)
* How genetic variation shapes phenotypic diversity

¢ Provide an introduction to complex trait genetics

» Monogenic vs multifactorial aetiology

* How we can utilize genomic data to elucidate
molecular genetic aetiology underlying complex
traits

« Genome-wide association studies (GWAS)
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WHO AM 1?

® BCs in biology from AU
® MSc in genetics from AU

® PhD in statistical and quantitative genetics from AU

©® Research group leader aiming to understanding the genetic
architecture of common complex diseases and translating
genomic discoveries into improved prevention, diagnosis,
and treatment

©® A central research priority for the group is advancing
statistical genomics through Al-driven methods.
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Palle Duun Rohde

Associate Professor in Statistical and Complex Trait Genetics
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AGENDA

09:00 — 09:15
09:15 - 09:45
09:45 -10:15
10:15 -10:30
10:30 - 11:00
11:00 — 11:40
11:40 — 12:00

Welcome

Session 1: Genetic variation and heredity
Group work 1: Genetic variation and heredity
Break

Session 2: From SNP to GWAS to disease risk
Group work 2: Construct your own PGS

Common discussion and evaluation
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What comes to mind when you hear personalised medicine?

Choose aslide to present

What is personalised medicine?

dccurate medicine

multiple variationer kvalitet

patienten i fokus hver patient sin behandli

targeted treatment

trakteret behandling datedrevet beslutninger prs

individualised treatment individual risk

mdlrettet behandling subgrupper
targetered behandling

Hvilken indsigt tager du med dig frai dag?

0 questions
1] a 0 upvotes



IMPLEMENTATION OF PRECISION MEDICINE

EPPOS [evidence-based precision personalised objective subjective]

Evidence-based Medicine Precision Medicine Personalised Medicine Individualised Medicine
(1) Contemporary evidence-based medicine (2) Probability scoring and stratification (3) Personalisation (objective) (4) Personalisation (subjective)
Estimate average risk or response using Maximise response and minimise risk Monitor response to optimise Adapt intervention to fit the person’s
epidemiological and clinical trial cohorts using subclassification dose, timing, and delivery needs, capabilities, and preferences
Placebo Treatment
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Choose aslide to present

What is personalised medicine?

What do you associate with genetic variation in the context of personalised medicine?

Hvilken indsigt tager du med dig fra i dag?
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SESSION 1

© Complex traits
© Genetic variation
© Linkage Disequilibrium (LD)

© Genetic parameters
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DIFFERENT MODE OF INHERITANCES

¢ Monogenic (single gene variant)
¢ Polygenic (many gene variants)
¢ Multifactorial (many gene variants plus

environment exposures )
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PLEIOTROPY

A single gene controls multiple traits

O Trait A

O Trait B
Gene

O Trait ¢

O Trat 0
POLYGENIC INHERITANCE

Multiple genes control a single trait
Gene A
Gene B ‘-\’
Gene C ./
Gene D

O Trait

Example: sickle-cell anemia
Inherited red blood cell disorder tha causes multiple pleiotropic phenotypes

- Diseased red
i | blood cells
|
| B-globin gene

mutation causes o
S S « Vascular damage

l
i

e Resistance to
Ao 8

.. malaria

Example: height

Difference in height across the population is caused by polygenic inheritance

0)

Fig: Pleiotropy vs Polygenic Inheritance

80 85 70 75
Height (in.)
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QUANTITATIVE TRAITS

IN DIFFERENT SHAPES

Continous variation Threshold traits

People without condition People with condition
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LIABILITY (thHresnoLp) MODEL

Threshold
zone

Clinical
diabetes

|

Number of predisposing alleles

in genotype

Liability model

Only individuals with a liability
over a certain threshold

will become affected

The sum of many genetic
variants with small effect/risk.

Each locus follow Mendelian
iInheritance pattern, although
the trait does not



GENETIC VARIATION IS LIKE CHILI

Carolina reaper Habanero Lemon Bell pepper

Weak effect on phenotype

Strong effect on phenotype Moderate effect on phenotype (or none at all)
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COMPLEX TRAITS -
are complex... -
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Gene

GENETIC VARIATION o NGOGOOORY

SINGLE NUCLEOTIDE POLYMORPHISMS (SNPs) 3! "

TACCACAACTCG
DNA template strand

'

A common change in a single base pair; ~1/1000 bp e e
Accounts for ~90% of all variation in the human genome i
L
a,  ONP = AUGGUGUUGAGC
. /4;\(,1';: L L LT L]
Gcapact’ All (known) SNPs has a unique identifier Triplet code words
independent of allel
«m\\h'\ L 46\ (independent of alleles) ¢
GCABCO ' rsXXX — Ref-SNP cluster ID number anonon oo e
N, T
R e W2 TAA l
U0, cO
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MUTATIONS GENERATE
GENETIC VARIATION

NO MUTATION POINT MUTATIONS

SILENT NONSENSE MISSENSE
Conservative Non-conservative
DNA level TTC TTT ATC TCC TGC
mRNA level AAG AAA UAG AGG ACG
Protein level Lys Lys STOP Arg Thr
| ! J ! |
H:N H2N H;N oH
>:NH H.N
HN 0
OH
H2:N H2N
0 0 H:N
OH OH 0
OH
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GENOTYPE TO PHENOTYPE

NORMAL B-GLOBIN

B O — TGA GGA pomew CTC........
MBNA: e v ACU CCU pBGAGE GACG.........
AMINo acid. ..o — Thr Pro Glu Glu —.......
4 5 6 7

MUTANT B-GLOBIN

DNA...eeereeenens TGA GGA CAC (CTC......
MRNA......rrrrne. ACU CCU GUG GAG......
Amino acid.............. — Thr Pro Val Glu ...

4 5 6 %
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GENOMIC COVERAGE

Time Genome coverage
[
[
I SNP array % O~lo/0
[
i SNP array with imputation — L 05%

Whole Exome Sequencing (WES) e el 1%

=Whole Genome Sequencing (WGS) I —_— N o5
v

((‘ AALBORG PAGE
UNIVERSITY Adapted from Uitterlinden A. (2016) An Introduction to Genome-Wide Association Studies: GWAS for 21
Dummies. Seminars in Reproductive Medicine, 34(4): 196-204.
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GENOTYPING VS SEQUENCING
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AGCTGAAGGAGTGTGGCCAATCTGCCTCCACCTCCCCGCGGACCCCCTACTCTCAGGACCTCCTGCAGCACCCCAAACTGGAAGTGGCCGCTGCAGACCCAAGGACGAGGGGCACGCGGGAGCCG GCAGCCCTAGTGGAGCGGTTGGAGATGTTGAGGTGGGAGGGT CACCC
AGGTGGGGTGAGGCT GGGGTAGGTAGCGGAGTGAACGGCTTCCGAAGCTCT GGGCCGCCCCCAGGT TGGACTAAGCAGGCGCTCTGTCTTCGCCCCCGCCCAGGGTGGGCGTCTCCTGAGGACTCCCCGCCACACCTGACCCGAGACCGCGCGCCCAGCCTAGAACGCTTCCC
CGACCCAGCGTAGGGCCGCCGCGACTGGCGCGCAGGGGGCGGCGGGAGGCCTGGCGAACCCGGGGGCGGGACCAGGCGGGCAAGGCCCGGLTGCCGCAGCGCCGLCTCTGCGCGAGGCGGLTCCGL CGCGGCGGAGGGATACGGCGCACCATATATATATCGCGGGGCGC
AGACTCGCGCTCCGGCAGTGGTGCTGGGAGTGTCGTGGACGCCGTGCCGTTACTCGTAGT CAGGCGGCGGCGCAGGCGGCGGCGGCGGCATAGCGCACAGCGCGCCTTAGCAGCAGCAGCAGCAG CAGCGGCATCGGAGGTACCCCCGCCGTCGCAGCCCCCGCGLTGGTG
CAGCCACCCTCGCTCCCTCTGCTCTTCCTCCCTTCGCTCGCACCATGGTAGGTCGGGAGT GGCAAATGCCGGCGTAGCAGCTGCCCGAGATTTCTTCCCAGATTTCTAGITGITTTGTTTGTTTT TTGTTTGTITTTTGGT TCTTGGAGGTTTTTCTTTTCTGAGTGTTACGCAGCAGCTG
CGCTTAAAGGAGGTTGCATTTTGGATTTGCATCTCGGCGACCTCTGCCAGGGAGCTTCATTTATTGGTTCCCCTTGGAGCTGGACTTGGTCGTAGGCCGTCCACGGGCAGGGGCTCCGGCCGCAA CTGCAGCGGGGGTTTCTGCAT CCAATCCCCCTGCCCLCCGLCCAGLCea
CACCCACTGCATCCACTAGCGCCGCACCCGGGCTGCCTGCAGCGCAGCGTTTCGGCCTGGGAGCCGGGCGGGGCCGGGCACTAGACCCCCCCCCCCGGLLCCGLLCCCTCCCCACCCCGLTTCTCCG CCGGCGCGAAGGTGGCAGGTCGGGCGGGCAGTGGAGAATGAATGGGCT
GGAGCTGGCCGGTGGCGCACATTGTTCCGGCCGGGTGTTGAGGGGCGCAGT CAGCGCCCGCCACCTCCCCACTTTGGCCGGCCCTGCTGGGCGCCCTCCCTCGGT CGCTCTCCCCTCCTTCTTCCCGGGGGGCGCGGCGCGGGCGTGGGCTGGGAAGGAAGGAGCCGGGGAA
GGGTGGGGTTGGGGGCAGGAAGGCGAGGGGTTGGGGGCGGAGAGGGCGGAAGCGGCGGLCCGGGCCGLCCTGLCGLCCCGGGLGGGGCCCTGCGGTGTGGCCGTGGCTTGTTCCTGCCGCTTTCGCAC CCTGCGGCCCCCCACCCAGTGCAGCAGTGCGGGCGGGCGTGAGC
CTCGGTGCACCAGGAGGCACTTCCCGCGGGAGGCGCTGGGCTCGCGCTAATTGGGGCGGGGGGGGGGGGCGGCGGGGGAGGAGGGAACTGGCGCGCGGCTTGGTTTCCATTAGAGACGCAAAGTT TCTGCT CCGGGAGGAGGCGGCGGCGCCGCGGGCTCGTCGLCTGG
GGGAGCAGAAGCGGGTGGGAGGTGCGGGTGGCCTTGGCCTCAGCCCTGGTGCGCGGGGGLCGGGGGTGGTGACCCTCCTGGCCGAGGAGGGGCGGCGTCCAGACGCCCGLTCGGGGGCCGCCTTC CCCCCCACGLCTGLCCCLCCGGGCACGLCGLCCTGLLCGGTCCCTCGCC
CCGCGCCACTTCCAGTCCGCAGAGAGATGCCCTCCACGTTTCTGCTTT CTCTGCAGCCTCTAGATTGCCAGATGCGACTGTGCGCCTCGCTGGGTGTGTTTTCCACAGCCCCTTCCTCCTCGGCGTGCAGGGCTGACATCACCGACTGCGTTTCTGGT TTGGCGGGTGGGGAGATG
GTTCCCCGCAGGGTTCTGGTACACCTTTGCCCCCAGGGCTAGCGCCATTTGGGGGAGGAGGTTTTCGTTGTCGAGAAAGTTGGATGCTCCTGGTAACCCCTCTAACAAGAGAGTTCTGTAGCGAG GTGGGACTGTTCTCCCCATAAGGTGACAGT TTCTCTTGCGAGGTGTGGCA
GCGCTTCCTGTTGTACAAGACAGATGTTGCCTTGGCGTTACGTAAATCATCGTGTCTCCGTCATTTAAAGAAAGCCAATTTTTAGTGATT GAGGTAGAAAGAAAGATCCGT TTATAATTTGTAAA AACAAATTTTCACCCAGAATCAATATATTGGAACACCATTCCTACTGTTAAA
GTTTTCACTTAAGAGTATAAACTTCATCAGCTTTCTATTAGGACT TATTTTGTAATTGGCTTCTTAGGCATCCTTCTTTAAAAGAGAAAT CCACGTTAGCTCTCCTTGAGGTCTCGAGTTCCCTCGGCTGGAGGCACAGGTTCAGTGGAGACCAAATAATGCAGGTGAATTACCTTCG
TGGCCATTACTGCCT CCAACGAAGTGT GTTTATTAAGAACAGTTCTTATGT CATTCTTAAGGT AGGTAGGGT TAATACTCTCCAGCAAATTTAGTAGATACTCTTTGCCAGAAAAGAGAGGAGTATATATAGTTTGATAATTATTGTGTAGT TTTCTGTGTACT TAATTTTTGCAGTT
TTGTAACACTTCATTTGT AAGATGGTACCATTTTTTCCTGGCTTCTGAATCATAGGATAGTTTGACCCAGGGCATTAGCCATTGTAATGGTAGGCTTTTAACAAATAACTGCCTAATTTAAAGGATTGGAAAGCATTTGTTACATGGAAATGAAGTTGGTGGCGTACCCAGTTGCTG
TATCTTTATTTTTTCTACTTAATTATTTCTCATAAAATGGATATAAAAGCCTGTTAATCCAACCCAATGCCATTATGTAACGCCAGTTTGGAGATTTCGAGGGCCTGGAGCAGTGCGCAAGGT GCGCTGAAAGCCTGCCCCTGGATGAGATCCTTATCCTGGCTGTGATGGCAGTGG
CAGTGGGCTGGGTCCCTTGTTGAGTGGAAAGGGGGACTGCGGTGT CCATGGTGCAGTAGGTGGCGCTCTTCTGTCTTAGAGCCTGCCGCCACTGCAGCTGGT GCCAAGGGGCCTTCTGCCACTAGAGGTGCCATTTTTCACATGATGAACTTAGCCTAGTTAGATCGCAGAGCA
AGCTGTAAGCCATGGGCCCAGAAAAGAAAACTTGAAGTGAGCAGATGTTGTCACTTCCTTGTAATCCTTTGT TAAAATAGCATAAGGAGTTTTCTTTATTCTATTTACTTTCATTAAATGACCGTGCTACAGGT TTCAAAGGATTTTAAGATTGATTTTTGAAAGATCACAATATTAA
AAGTATAACTGGAAAACCTATGTTGAAATCAACCAAACATGT CGTGGACTGAATGATAACCTTTTCTTTCTTCATATAGGCTGATCAGCTGACCGAAGAACAGATTGCTGGTAAGTTGACAACTC CAAGGAGTCCCCAGAAGGCCAGAACTAGGCACTGACTCAGTTTTGGTGAC
TCCTCTGTTCCTCCCCGCTACAGTCTGGGCAGTTTTCTAAGAATT TATTTAAATAAGAACAGTAAGCAGAAACACTGAGGTCAGATGTTATTCTTGCCAGTACTTTATAGATGAGGT GAAAGGAA GTAAAACTAAGGATGCCCACATGTTAAACT CTGGAGAATTTGACCATGTTTC
ACAATGTGCAAAGTTTGCGTATGATTAATT GTACTGAGCCTGCTACTCAGCGGT TTAGTTTACAATTCTTATGCCATGGGT CTTTCAGTAATCTGCCACGAAAGCTTGTGCTCGCTATCCTAAAATAAATGGAAATGGGT GAATATGAGTGT TAGGACCACTGTAGTAATTGGGAA
GAAAGTTACATTAGT TAAACTCTGTTGCCCAGGCTGGTCTCTAACTCCTGGGCT CAAGCAATCCTCCTGCCTCAGCCTCCTGAGTAGCTGGGACTACAGGCATGT GCCACCACGTCT GGCAGATT TTAGCTTTTTAATATTCCTGGAGGACT TGT TTTGAGACTGTTTCTCGTTAGGA
AACCAGGAATGCTTCTGAAATATTCTAAAAGTCATGTGGAGAGAGTTTACCTGGGAATGTACATTTCTAGTAACCATTTTATTITGTTATGAAACAAGGGATTCTTATGGCT TTAGAAATGTAACA GGAAGGGATTTGAAGGGGGCACATGGACCAATCTTGTCAGATTGGATTTA
GTCCCTTGAACCTGGGAGGCAGGGGTTGTAGTGAGCTGAGATTGCACCACTGCACTCCAATCTCGGTGACAGAGCGAGACT CCATTGTTTAAAAAAAAAAAAAAAGATTGGATTTAGGACTAATT TAAGCATGT TCCAGCTTAGCCGCCTTGAAACCTTTGGGAATATTGTGGTG
TGTGGCACTGTTTATTGGGAGCAGTGTTTGCTTTATGGGCTGCTGTATGAAGGCCAGTCCAACAGGACTATTGTGGTCATTATTTCAGTAGATAAAGACCAGACT TCTGATACGTTGCACAACTTGAATGGCTGGCT TTGGCAAGCCCCCGGCAAGTGTGTATTGTGACTGGGTTG
GATAAAGACATT GATTCTAACGGGTCAACTTTTGTTTTCAGAATT CAAGGAAGCCTTCTCCCTATTTGATAAAGATGGCGATGGCACCAT CACAACAAAGGAACTTGGAACTGT CATGAGGTCACTGGGTCAGAACCCAACAGAAGCTGAATTGCAGGATATGATCAATGAAGTG
GATGCTGATGGTAAGAGCTTTAAAACCATGAATGAGGGCCATTGTTGTGTAATTCAAGTT CAGACATGTTACAGGATTGTCTTTCAGGTCCCCAGAGCAAAGCAAATGTGCAAAGATCCTTTCTG TGGTTGCCCCAGGGCCATTGACAATTAAAATAGAAGATGATGGGCCTTGC
GTCCATCCTGCTTAGTGT CTAGAATGT TTTCTGCATGGGATCACTATTGTTTTCTTCCTGCTTGGTGCGACCTAGAGCTCAAAT CTATTTTTTTITITTTTITTTGGAGACGGAGTCTCGCCCTGTCGCCCAGGCTGGAGTGGCACTGGCGCGATCTCGGCTCACTGCAACCTCTGCCTC
TTGGGTTCCAGCGATTCT CCTGCGTCAGCCTTCTGAGTAGCT GGAATTACAGGCGTGTGTCGCCACGCCCAGTTAGTIGTTTTGTATCTTTAGTAGAGATGGGGTTTCACCATGT TGGCCAGGCTGGTCTCAAACTCCTGACCTCGT GATCCGCCCTCCCCGGCCTCCCAAAGTGCTG
GGATTACAGGCGTGAACCACTGCT CCTGGCCGAGCTCAAAGCTTTTATCAACTGGCCCATGAGTCTGCACTGAGT CTTGAGGGGGGAGGTGAAATT AAATAGCCATAGAAAGTGCTTTTTAACAAACTTACTGTGTTTAAAGAGGAGGAGGAACCCCCAGATGAAGTAGGTGAC
GAGCACTCTTAGAAGTTACCATAAAAGTGAGTACAGTGTGAGCTGTAGATGTGTTTGCTGCAGAGGAGCATGTGAGGT TTGGAGGCGGATGTGTGGTGACTCCAGGGGATAGATTTGCAGAACCTAACGGAAAGGGAAGCTGT AAGGTGCAGGGCCAGAGGGAACCAGCAG
TAACCCTGATAGCGGTCTGTCATCTGTTCCTCT CGACTCTACAGCAGCGGACAACAGAACTTTGATTGCTGATTTCCATCAGTAAGCAGGCTTTGAAGCACACTTCCCCACCCCTAAAAAAAAACCACGTATTTTGGTAAATCCTATATATATTCTAATGTACTGTATGACAGTATAG
AACATGATTTTTAAAAGATGAGTTGGGAGGAGAAAAGGATAAAAGAAAAAATAAAAGAAGCATTAAGAATAAACAATT CGGATCTAGATTTTACTTTCTAGATGATTGACT CGAGGGTGGTGTAG TAAAATCGCTTGTCTGGTCACAAACATTTGGCAGCAGAGCTTTTGATTA
GGTTCTTTGACAAAGCCTTCAGCACGTTAGAGTGGT TTTCACTAATAGTGTTTT GGAAAGAAAAGGTTGTCCATAGTTCTCTAGTTTGCT AAGATGATCAGCTACCCAGGAACGTGGAGTAACTT CCTCTTGTTTGTGGGAGCCCCGGGAATCTGTGCCTGGGGAGGGGAGAAGT
CTGTTAGGCTCTTGGATTGTGTGGAAGAAGGAGAAGTTGTGCCAGGCTACAGAATCCTGT GTTTGCACTGAGAAAACAGGATGGTACCTGACCTTCTCTGCATGGCTGTGAGATAGCTTAAAATAATTTCTTTT GTTTTTGATGAATATGAACAATATCTTAAAATTTTTGAGGCTA
AAAAAGTCTTGAAGGGATCCCTGAGGTATTTTCTTTGAAAGGTACTGGTGAAAATGAGTAACTTAACCTAAGGGTTTTTCTTTCTAATTTTATTTCCATTTAGTTCAATGACACTGT TAGTCTGGAGTGCTTGTCTTTGGGGGTATTCATCT CTTAGT TTTAAAGAGGAGTTGTTTGG
AGTACTGGCCGTAGAACAGATTGTTCT GACAGTTCCCTAAGT GTTACTAGT CTGAGCTGT GAGAATGCTCCT GAGCTTTTCCCTTAATGGGAAATAAAGATACTGAGTTGGAAGAAAACAGGT GG CTAACCATCATAGCGTGGCCAAGAAATGATCCTGGAGAAGACTTGGTAA
GACTTCATGGCCCATGCATGGCATAACAGAATCAATGTTCCTCTCTCATAATCTTTTCTCCTCTGAAACACTTTATACACT TAACCT GCAGCTCAGTTCTAGGCCTTTTTGTGT TACTGCTGTCACTAACCAAGGCAGAGTGAGACCTGAGT GATTTCCCTAACTCAGGGATGGCAGT

CGGGGGCGCTTTCTTCCCTCGGAGTGGAAAGATTCAGCCTGCGGAGTGGTGTATGCTA CTCTTGAACTGTACAGCCCTTCATGACCCTTCCATGGGCTTGAATCCAGATGTGCAGTTTCCTTTGTATAATTAAATACTATCCTGGGCACTGATGATGAGTTTGAAATTATGT
GAAATTGCCCTGTGAAGTGTTT
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GENOTYPING VS SEQUENCING

Genotyping
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AGCTGAAGGAGTGTGGCCAATCTGCCTCCACCTCCCCGCGGACCCCCTACTCTCAGGACCTCCTGCAGCACCCCAAACTGGAAGTGGCCGCTGCAGACCCAAGGACGAGGGGCACGCGGGAGCCG GCAGCCCTAGTGGAGCGGTTGGAGATGTTGAGGTGGGAGGGT CACCC
AGGTGGGGTGAGGCT GGGGTAGGTAGCGGAGTGAACGGCTTCCGAAGCTCT GGGCCGCCCCCAGGT TGGACTAAGCAGGCGCTCTGTCTTCGCCCCCGCCCAGGGTGGGCGTCTCCTGAGGACTCCCCGCCACACCTGACCCGAGACCGCGCGCCCAGCCTAGAACGCTTCCC
CGACCCAGCGTAGGGCCGCCGCGACTGGCGCGCAGGGGGCGGCGGGAGGCCTGGCGAACCCGGGGGCGGGACCAGGCGGGCAAGGCCCGGLTGCCGCAGCGCCGLCTCTGCGCGAGGCGGLTCCGL CGCGGCGGAGGGATACGGCGCACCATATATATATCGCGGGGCGC
AGACTCGCGCTCCGGCAGTGGTGCTGGGAGTGTCGTGGACGCCGTGCCGTTACTCGTAGT CAGGCGGCGGCGCAGGCGGCGGCGGCGGCATAGCGCACAGCGCGCCTTAGCAGCAGCAGCAGCAG CAGCGGCATCGGAGGTACCCCCGCCGTCGCAGCCCCCGCGLTGGTG
CAGCCACCCTCGCTCCCTCTGCTCTTCCTCCCTTCGCTCGCACCATGGTAGGTCGGGAGT GGCAAATGCCGGCGTAGCAGCTGCCCGAGATTTCTTCCCAGATTTCTAGITGITTTGTTTGTTTT TTGTTTGTITTTITGGT TCTTGGAGGTTTTTCTTTTCTGAGTGTTACGCAGCAGCTG
CGCTTAAAGGAGGTTGCATTTTGGATTTGCATCTCGGCGACCTCTGCCAGGGAGCTTCATTTATTGGTTCCCCTTGGAGCTGGACTTGGTCGTAGGCCGTCCACGGGCAGGGGCTCCGGCCGCAA CTGCAGCGGGGGTTTCTGCAT CCAATCCCCCTGCCCLCCGLCCAGLCea
CACCCACTGCATCCACTAGCGCCGCACCCGGGCTGCCTGCAGCGCAGCGTTTCGGCCTGGGAGCCGGGCGGGGCCGGGCACTAGACCCCCCCCCCCGGLLCCGLLCCCTCCCCACCCCGLTTCTCCG CCGGCGCGAAGGTGGCAGGTCGGGCGGGCAGTGGAGAATGAATGGGCT
GGAGCTGGCCGGTGGCGCACATTGTTCCGGCCGGGTGTTGAGGGGCGCAGT CAGCGCCCGCCACCTCCCCACTTTGGCCGGCCCTGCTGGGCGCCCTCCCTCGGT CGCTCTCCCCTCCTTCTTCCCGGGGGGCGCGGCGCGGGCGTGGGCTGGGAAGGAAGGAGCCGGGGAA
GGGTGGGGTTGGGGGCAGGAAGGCGAGGGGTTGGGGGCGGAGAGGGCGGAAGCGGCGGLCCGGGCCGLCCTGLCGLCCCGGGLGGGGCCCTGCGGTGTGGCCGTGGCTTGTTCCTGCCGCTTTCGCAC CCTGCGGCCCCCCACCCAGTGCAGCAGTGCGGGCGGGCGTGAGC
CTCGGTGCACCAGGAGGCACTTCCCGCGGGAGGCGCTGGGCTCGCGCTAATTGGGGCGGGGGGGGGGGGCGGCGGGGGAGGAGGGAACTGGCGCGCGGCTTGGTTTCCATTAGAGACGCAAAGTT TCTGCT CCGGGAGGAGGCGGCGGCGCCGCGGGCTCGTCGLCTGG
GGGAGCAGAAGCGGGTGGGAGGTGCGGGTGGCCTTGGCCTCAGCCCTGGTGCGCGGGGGLCGGGGGTGGTGACCCTCCTGGCCGAGGAGGGGCGGCGTCCAGACGCCCGLTCGGGGGCCGCCTTC CCCCCCACGLCTGLCCCLCCGGGCACGLCGLCCTGLLCGGTCCCTCGCC
CCGCGCCACTTCCAGTCCGCAGAGAGATGCCCTCCACGTTTCTGCTTT CTCTGCAGCETCTAGATTGCCAGATGCGACTGTGCGCCTCGCTGGGTGTGT TTTCCACAGCCCCTTCCT CCTCGGCGTGCAGGGCTGACATCACCGACTGCGTTTCTGGT TTGGCGGGTGGGGAGATG
GTTCCCCGCAGGGTTCTGGTACACCTTTGCCCCCAGGGCTAGCGCCATTTGGGGGAGGAGGTTTTCGTTGTCGAGAAAGTTGGATGCTCCTGGTAACCCCTCTAACAAGAGAGTTCTGTAGCGAG GTGGGACTGTTCTCCCCATAAGGTGACAGT TTCTCTTGCGAGGTGTGGCA
GCGCTTCCTGTTGTACAAGACAGATGTTGCCTTGGCGTTACGTAAATCATCGTGTCTCCGTCATTTAAAGAAAGCCAATTTTTAGTGATT GAGGTAGAAAGAAAGATCCGTTTATAATTTGTAAA AACAAATTTTCACCCAGAATCAATATATTGGAACACCATTCCTACTGTTAAA
GTTTTCACTTAAGAGTATAAACTTCATCAGCTTTCTATTAGGACT TATTTTGTAATTGGCTTCTTAGGCATCCTTCTTTAAAAGAGAAAT CCACGTTAGCTCTCCTTGAGGTCTCGAGTTCCCTCGGCTGGAGGCACAGGTTCAGTGGAGACCAAATAATGCAGGTGAATTACCTTCG
TGGCCATTACTGCCT CCAACGAAGTGT GTTTATTAAGAACAGTTCTTATGT CATTCTTAAGGT AGGTAGGGT TAATACTCTCCAGCAAATTTAGTAGATACTCTTTGCCAGAAAAGAGAGGAGTATATATAGTTTGATAATTATTGTGTAGT TTTCTGTGTACT TAATTTTTGCAGTT
TTGTAACACTTCATTTGT AAGATGGTACCATTTTTTCCTGGCTTCTGAATCATAGGATAGTTTGACCCAGGGCATTAGCCATTGTAATGGTAGGCTTTTAACAAATAACTGCCTAATTTAAAGGATTGGAAAGCATTTGTTACATGGAAATGAAGTTGGTGGCGTACCCAGTTGCTG
TATCTTTATTTTTTCTACTTAATTATTTCTCATAAAATGGATATAAAAGCCTGTTAATCCAACCCAATGCCATTATGTAACGCCAGTTTGGAGATTTCGAGGGCCTGGAGCAGTGCGCAAGGT GCGCTGAAAGCCTGCCCCTGGATGAGATCCTTATCCTGGCTGTGATGGCAGTGG
CAGTGGGCTGGGTCCCTTGTTGAGTGGAAAGGGGGACTGCGGTGT CCATGGTGCAGTAGGTGGCGCTCTTCTGTCTTAGAGCCTGCCGCCACTGCAGCTGGT GCCAAGGGGCCTTCTGCCACTAGAGGTGCCATTTTTCACATGATGAACTTAGCCTAGTTAGATCGCAGAGCA
AGCTGTAAGCCATGGGCCCAGAAAAGAAAACTTGAAGTGAGCAGATGTTGTCACTTCCTTGTAATCCTTTGT TAAAATAGCATAAGGAGTTTTCTTTATTCTATTTACTTTCATTAAATGACCGTGCTACAGGT TTCAAAGGATTTTAAGATTGATTTTTGAAAGATCACAATATTAA
AAGTATAACTGGAAAACCTATGTTGAAATCAACCAAACATGT CGTGGACTGAATGATAACCTTTTCTTTCTTCATATAGGCTGATCAGCTGACCGAAGAACAGATTGCTGGTAAGTTGACAACTC CAAGGAGTCCCCAGAAGGCCAGAACTAGGCACTGACTCAGTTTTGGTGAC
TCCTCTGTTCCTCCCCGCTACAGTCTGGGCAGTTTTCTAAGAATT TATTTAAATAAGAACAGTAAGCAGAAACACTGAGGTCAGATGTTATTCTTGCCAGTACTTTATAGATGAGGT GAAAGGAA GTAAAACTAAGGATGCCCACATGTTAAACT CTGGAGAATTTGACCATGTTTC
ACAATGTGCAAAGTTTGCGTATGATTAATT GTACTGAGCCTGCTACTCAGCGGT TTAGTTTACAATTCTTATGCCATGGGT CTTTCAGTAATCTGCCACGAAAGCTTGTGCTCGCTATCCTAAAATAAATGGAAATGGGT GAATATGAGTGT TAGGACCACTGTAGTAATTGGGAA
GAAAGTTACATTAGT TAAACTCTGTTGCCCAGGCTGGTCTCTAACTCCTGGGCT CAAGCAATCCTCCTGCCTCAGCCTCCTGAGTAGCTGGGACTACAGGCATGT GCCACCACGTCT GGCAGATT TTAGCTTTTTAATATTCCTGGAGGACT TGTTTTGAGACTGTTTCTCGTTAGGA
AACCAGGAATGCTTCTGAAATATTCTAAAAGTCATGTGGAGAGAGTTTACCTGGGAATGTACATTTCTAGTAACCATTTTATTITGTTATGAAACAAGGGATTCTTATGGCT TTAGAAATGTAACA GGAAGGGATTTGAAGGGGGCACATGGACCAATCTTGTCAGATTGGATTTA
GTCCCTTGAACCTGGGAGGCAGGGGTTGTAGTGAGCTGAGATTGCACCACTGCACTCCAATCTCGGTGACAGAGCGAGACT CCATTGTTTAAAAAAAAAAAAAAAGATTGGATTTAGGACTAATT TAAGCATGT TCCAGCTTAGCCGCCTTGAAACCTTTGGGAATATTGTGGTG
TGTGGCACTGTTTATTGGGAGCAGTGTTTGCTTTATGGGCTGCTGTATGAAGGCCAGTCCAACAGGACTATTGTGGTCATTATTTCAGTAGATAAAGACCAGACT TCTGATACGTTGCACAACTTGAATGGCTGGCT TTGGCAAGCCCCCGGCAAGTGTGTATTGTGACTGGGTTG
GATAAAGACATT GATTCTAACGGGTCAACTTTTGTTTTCAGAATT CAAGGAAGCCTTCTCCCTATTTGATAAAGATGGCGATGGCACCAT CACAACAAAGGAACTTGGAACTGT CATGAGGTCACTGGGTCAGAACCCAACAGAAGCTGAATTGCAGGATATGATCAATGAAGTG
GATGCTGATGGTAAGAGCTTTAAAACCATGAAT GAGGGCCATTGTTGTGTAATT CAAGTT CAGACATGTTACAGGATTGTCTTTCAGGTCCCCAGAGCAAAGCAAATGTGCAAAGATCCTTTCTG TGGTTGCCCCAGGGCCATTGACAATTAAAATAGAAGATGATGGGCCTTGC
GTCCATCCTGCTTAGTGT CTAGAATGT TTTCTGCATGGGATCACTATTGTTTTCTTCCTGCTTGGTGCGACCTAGAGCTCAAAT CTATTTTTTTITITTTTITTTGGAGACGGAGTCTCGCCCTGTCGCCCAGGCTGGAGTGGCACTGGCGCGATCTCGGCTCACTGCAACCTCTGCCTC
TTGGGTTCCAGCGATTCT CCTGCGTCAGCCTTCTGAGTAGCT GGAATTACAGGCGTGTGTCGCCACGCCCAGTTAGTIGTTTTGTATCTTTAGTAGAGATGGGGTTTCACCATGT TGGCCAGGCTGGTCTCAAACTCCTGACCTCGT GATCCGCCCTCCCCGGCCTCCCAAAGTGCTG
GGATTACAGGCGTGAACCACTGCT CCTGGCCGAGCTCAAAGCTTTTATCAACTGGCCCATGAGTCTGCACTGAGT CTTGAGGGGGGAGGTGAAATT AAATAGCCATAGAAAGTGCTTTTTAACAAACTTACTGTGTTTAAAGAGGAGGAGGAACCCCCAGATGAAGTAGGTGAC
GAGCACTCTTAGAAGTTACCATAAAAGTGAGTACAGTGTGAGCTGTAGATGTGTTTGCTGCAGAGGAGCATGTGAGGT TTGGAGGCGGATGTGTGGTGACTCCAGGGGATAGATTTGCAGAACCTAACGGAAAGGGAAGCTGT AAGGTGCAGGGCCAGAGGGAACCAGCAG
TAACCCTGATAGCGGTCTGTCATCTGTTCCTCT CGACTCTACAGCAGCGGACAACAGAACTTTGATTGCTGATTTCCATCAGTAAGCAGGCTTTGAAGCACACTTCCCCACCCCTAAAAAAAAACCACGTATTTTGGTAAATCCTATATATATTCTAATGTACTGTATGACAGTATAG
AACATGATTTTTAAAAGATGAGTT GGGAGGAGAAAAGGATAAAAGAAAAAATAAAAGAAGCATTAAGAATAAACAATT CGGATCTAGATTTTACTTTCTAGATGATTGACT CGAGGGTGGTGTAG TAAAATCGCTTGTCT GGTCACAAACATTTGGCAGCAGAGCTTTTGATTA
GGTTCTTTGACAAAGCCTTCAGCACGTTAGAGTGGT TTTCACTAATAGTGTTTT GGAAAGAAAAGGTTGTCCATAGTTCTCTAGTTTGCT AAGATGATCAGCTACCCAGGAACGTGGAGTAACTT CCTCTTGTTTGTGGGAGCCCCGGGAATCTGTGCCTGGGGAGGGGAGAAGT
CTGTTAGGCTCTTGGATTGTGTGGAAGAAGGAGAAGTTGTGCCAGGCTACAGAATCCTGT GTTTGCACTGAGAAAACAGGATGGTACCTGACCTTCTCTGCATGGCTGTGAGATAGCTTAAAATAATTTCTTTT GTTTTTGATGAATATGAACAATATCTTAAAATTTTTGAGGCTA
AAAAAGTCTTGAAGGGATCCCTGAGGTATTTTCTTTGAAAGGTACTGGTGAAAATGAGTAACTTAACCTAAGGGTTTTTCTTTCTAATTTTATTTCCATTTAGTTCAATGACACTGT TAGTCTGGAGTGCTTGTCTTTGGGGGTATTCATCT CTTAGT TTTAAAGAGGAGTTGTTTGG
AGTACTGGCCGTAGAACAGATTGTTCT GACAGTTCCCTAAGT GTTACTAGT CTGAGCTGT GAGAATGCTCCT GAGCTTTTCCCTTAATGGGAAATAAAGATACTGAGTTGGAAGAAAACAGGT GG CTAACCATCATAGCGTGGCCAAGAAATGATCCTGGAGAAGACTTGGTAA
GACTTCATGGCCCATGCATGGCATAACAGAATCAATGTTCCTCTCTCATAATCTTTTCTCCTCTGAAACACTTTATACACT TAACCT GCAGCTCAGTTCTAGGCCTTTTTGTGT TACTGCTGTCACTAACCAAGGCAGAGTGAGACCTGAGT GATTTCCCTAACTCAGGGATGGCAGT

CGGGGGCGCTTTCTTCCCTCGGAGTGGAAAGATTCAGCCTGCGGAGTGGTGTATGCTA CTCTTGAACTGTACAGCCCTTCATGACCCTTCCATGGGCTTGAATCCAGATGTGCAGTTTCCTTTGTATAATTAAATACTATCCTGGGCACTGATGATGAGTTTGAAATTATGT
GAAATTGCCCTGTGAAGTGTTT
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AGCTGAAGGAGTGTGGCCAATCTGCCTCCACCTCCCCGCGGACCCCCTACTCTCAGGACCTCCTGCAGCACCCCAAACTGGAAGTGGCCGCTGCAGACCCAAGGACGAGGGGCACGCGGGAGCCG GCAGCCCTAGTGGAGCGGTTGGAGATGTTGAGGTGGGAGGGT CACCC
AGGTGGGGTGAGGCT GGGGTAGGTAGCGGAGTGAACGGCTTCCGAAGCTCT GGGCCGCCCCCAGGT TGGACTAAGCAGGCGCTCTGTCTTCGCCCCCGCCCAGGGTGGGCGTCTCCTGAGGACTCCCCGCCACACCTGACCCGAGACCGCGCGCCCAGCCTAGAACGCTTCCC
CGACCCAGCGTAGGGCCGCCGCGACTGGCGCGCAGGGGGCGGCGGGAGGCCTGGCGAACCCGGGGGLGGGACCAGGCGGGCAAGGLCLGGLTGCCGCAGLGLLGLTCTGCGCGAGGCGGLTCCGL CGCGGCGGAGGGATACGGCGCACCATATATATATCGCGGGGCGC
AGACTCGCGCTCCGGCAGTGGTGCTGGGAGTGTCGTGGACGCCGTGCCGTTACTCGTAGT CAGGCGGCGGCGCAGGCGGCGGCGGCGGCATAGCGCACAGCGCGCCTTAGCAGCAGCAGCAGCAG CAGCGGCATCGGAGGTACCCCCGCCGTCGCAGCCCCCGCGLTGGTG
CAGCCACCCTCGCTCCCTCTGCTCTTCCTCCCTTCGCTCGCACCATGGTAGGTCGGGAGT GGCAAATGCCGGCGTAGCAGCTGCCCGAGATTTCTTCCCAGATTTCTAGITGITTTGTTTGTTTT TTIGTTTGTITTTITGGT TCTTGGAGGTTTTTCTTTTCTGAGTGTTACGCAGCAGCTG
CGCTTAAAGGAGGTTGCATTTTGGATTTGCATCTCGGCGACCTCTGCCAGGGAGCTTCATTTATTGGTTCCCCTTGGAGCTGGACTTGGTCGTAGGCCGTCCACGGGCAGGGGCTCCGGCCGCAA CTGCAGCGGGGGTTTCTGCAT CCAATCCCCCTGCCCLCCGLCCAGLCea
CACCCACTGCATCCACTAGCGCCGCACCCGGGCTGCCTGCAGCGCAGCGTTTCGGCCTGGGAGCCGGGCGGGGCCGGGCACTAGACCCCCCCCCCCGGLLCCGLLCCCTCCCCACCCCGLTTCTCCG CCGGCGCGAAGGTGGCAGGTCGGGCGGGCAGTGGAGAATGAATGGGCT
GGAGCTGGCCGGTGGCGCACATTGTTCCGGCCGGGTGTTGAGGGGCGCAGT CAGCGCCCGCCACCTCCCCACTTTGGCCGGCCCTGCTGGGCGCCCTCCCTCGGT CGCTCTCCCCTCCTTCTTCCCGGGGGGCGCGGCGCGGGCGTGGGCTGGGAAGGAAGGAGCCGGGGAA
GGGTGGGGTTGGGGGCAGGAAGGCGAGGGGTTGGGGGCGGAGAGGGCGGAAGCGGCGGLCCGGGCCGLCCTGLCGLCCCGGGLGGGGCCCTGCGGTGTGGCCGTGGCTTGTTCCTGCCGCTTTCGCAC CCTGCGGCCCCCCACCCAGTGCAGCAGTGCGGGCGGGCGTGAGC
CTCGGTGCACCAGGAGGCACTTCCCGCGGGAGGCGCTGGGCTCGCGCTAATTGGGGCGGGGGGGGGGGGCGGCGGGGGAGGAGGGAACTGGCGCGCGGCTTGGTTTCCATTAGAGACGCAAAGTT TCTGCT CCGGGAGGAGGCGGCGGCGCCGCGGGCTCGTCGLCTGG
GGGAGCAGAAGCGGGTGGGAGGTGCGGGTGGCCTTGGCCTCAGCCCTGGTGCGCGGGGGLCGGGGGTGGTGACCCTCCTGGCCGAGGAGGGGCGGCGTCCAGACGCCCGLTCGGGGGCCGCCTTC CCCCCCACGLCTGLCCCLCCGGGCACGLCGLCCTGLLCGGTCCCTCGCC
CCGCGCCACTTCCAGTCCGCAGAGAGATGCCCTCCACGTTTCTGCTTT CTCTGCAGCETCTAGATTGCCAGATGCGACTGTGCGCCTCGCTGGGTGTGT TTTCCACAGCCCCTTCCT CCTCGGCGTGCAGGGCTGACATCACCGACTGCGTTTCTGGT TTGGCGGGTGGGGAGATG
GTTCCCCGCAGGGTTCTGGTACACCTTTGCCCCCAGGGCTAGCGCCATTTGGGGGAGGAGGTTTTCGTTGTCGAGAAAGTTGGATGCTCCTGGTAACCCCTCTAACAAGAGAGTTCTGTAGCGAG GTGGGACTGTTCTCCCCATAAGGTGACAGT TTCTCTTGCGAGGTGTGGCA
GCGCTTCCTGTTGTACAAGACAGATGTTGCCTTGGCGTTACGTAAATCATCGTGTCTCCGTCATTTAAAGAAAGCCAATTTTTAGTGATT GAGGTAGAAAGAAAGATCCGTTTATAATTTGTAAA AACAAATTTTCACCCAGAATCAATATATTGGAACACCATTCCTACTGTTAAA
GTTTTCACTTAAGAGTATAAACTTCATCAGCTTTCTATTAGGACT TATTTTGTAATTGGCTTCTTAGGCATCCTTCTTTAAAAGAGAAAT CCACGTTAGCTCTCCTTGAGGTCTCGAGTTCCCTCGGCTGGAGGCACAGGTTCAGTGGAGACCAAATAATGCAGGTGAATTACCTTCG
TGGCCATTACTGCCT CCAACGAAGTGT GTTTATTAAGAACAGTTCTTATGT CATTCTTAAGGT AGGTAGGGT TAATACTCTCCAGCAAATTTAGTAGATACTCTTTGCCAGAAAAGAGAGGAGTATATATAGTTTGATAATTATTGTGTAGT TTTCTGTGTACT TAATTTTTGCAGTT
TTGTAACACTTCATTTGT AAGATGGTACCATTTTTTCCTGGCTTCTGAATCATAGGATAGTTTGACCCAGGGCATTAGCCATTGTAATGGTAGGCTTTTAACAAATAACTGCCTAATTTAAAGGATTGGAAAGCATTTGTTACATGGAAATGAAGTTGGTGGCGTACCCAGTTGCTG
TATCTTTATTTTTTCTACTTAATTATTTCTCATAAAATGGATATAAAAGCCTGTTAATCCAACCCAATGCCATTATGTAACGCCAGTTTGGAGATTTCGAGGGCCTGGAGCAGTGCGCAAGGT GCGCTGAAAGCCTGCCCCTGGATGAGATCCTTATCCTGGCTGTGATGGCAGTGG
CAGTGGGCTGGGTCCCTTGTTGAGTGGAAAGGGGGACTGCGGTGT CCATGGTGCAGTAGGTGGCGCTCTTCTGTCTTAGAGCCTGCCGCCACTGCAGCTGGT GCCAAGGGGCCTTCTGCCACTAGAGGTGCCATTTTTCACATGATGAACTTAGCCTAGTTAGATCGCAGAGCA
AGCTGTAAGCCATGGGCCCAGAAAAGAAAACTTGAAGTGAGCAGATGTTGTCACTTCCTTGTAATCCTTTGT TAAAATAGCATAAGGAGTTTTCTTTATTCTATTTACTTTCATTAAATGACCGTGCTACAGGT TTCAAAGGATTTTAAGATTGATTTTTGAAAGATCACAATATTAA
AAGTATAACTGGAAAACCTATGTTGAAATCAACCAAACATGT CGTGGACTGAATGATAACCTTTTCTTTCTTCATATAGGCTGATCAGCTGACCGAAGAACAGATTGCTGGTAAGTTGACAACTC CAAGGAGTCCCCAGAAGGCCAGAACTAGGCACTGACTCAGTTTTGGTGAC
TCCTCTGTTCCTCCCCGCTACAGTCTGGGCAGTTTTCTAAGAATT TATTTAAATAAGAACAGTAAGCAGAAACACTGAGGTCAGATGTTATTCTTGCCAGTACTTTATAGATGAGGT GAAAGGAA GTAAAACTAAGGATGCCCACATGTTAAACT CTGGAGAATTTGACCATGTTTC
ACAATGTGCAAAGTTTGCGTATGATTAATT GTACTGAGCCTGCTACTCAGCGGT TTAGTTTACAATTCTTATGCCATGGGT CTTTCAGTAATCTGCCACGAAAGCTTGTGCTCGCTATCCTAAAATAAATGGAAATGGGT GAATATGAGTGT TAGGACCACTGTAGTAATTGGGAA
GAAAGTTACATTAGT TAAACTCTGTTGCCCAGGCTGGTCTCTAACTCCTGGGCT CAAGCAATCCTCCTGCCTCAGCCT CCTGAGTAGCTGGGACTACAGGCATGT GCCACCACGTCT GGCAGATT TTAGCTTTTTAATATTCCTGGAGGACT TGTTTTGAGACTGTTTCTCGTTAGGA
AACCAGGAATGCTTCTGAAATATTCTAAAAGTCATGTGGAGAGAGTTTACCTGGGAATGTACATTTCTAGTAACCATTTTATTITGTTATGAAACAAGGGATTETTATGGCT TTAGAAATGTAACA GGAAGGGATTTGAAGGGGGCACATGGACCAATCTTGTCAGATTGGATTTA
GTCCCTTGAACCTGGGAGGCAGGGGTTGTAGTGAGCTGAGATTGCACCACTGCACTCCAATCTCGGTGACAGAGCGAGACT CCATTGTTTAAAAAAAAAAAAAAAGATTGGATTTAGGACTAATT TAAGCATGT TCCAGCTTAGCCGCCTTGAAACCTTTGGGAATATTGTGGTG
TGTGGCACTGTTTATTGGGAGCAGTGTTTGCTTTATGGGCTGCTGTATGAAGGCCAGTCCAACAGGACTATTGTGGTCATTATTTCAGTAGATAAAGACCAGACT TCTGATACGTTGCACAACTTGAATGGCTGGCT TTGGCAAGCCCCCGGCAAGTGTGTATTGTGACTGGGTTG
GATAAAGACATT GATTCTAACGGGTCAACTTTTGTTTTCAGAATT CAAGGAAGCCTTCTCCCTATTTGATAAAGATGGCGATGGCACCAT CACAACAAAGGAACTTGGAACTGT CATGAGGTCACTGGGTCAGAACCCAACAGAAGCTGAATTGCAGGATATGATCAATGAAGTG
GATGCTGATGGTAAGAGCTTTAAAACCATGAAT GAGGGCCATTGTTGTGTAATT CAAGTT CAGACATGTTACAGGATTGTCTTTCAGGTCCCCAGAGCAAAGCAAATGTGCAAAGATCCTTTCTG TGGTTGCCCCAGGGCCATTGACAATTAAAATAGAAGATGATGGGCCTTGC
GTCCATCCTGCTTAGTGT CTAGAATGT TTTCTGCATGGGATCACTATTGTTTTCTTCCTGCTTGGTGCGACCTAGAGCTCAAAT CTATTTTTTTITITTTTITTTGGAGACGGAGTCTCGCCCTGTCGCCCAGGCTGGAGTGGCACTGGCGCGATCTCGGCTCACTGCAACCTCTGCCTC
TTGGGTTCCAGCGATTCT CCTGCGTCAGCCTTCTGAGTAGCT GGAATTACAGGCGTGTGTCGCCACGCCCAGTTAGTIGTTTTGTATCTTTAGTAGAGATGGGGTTTCACCATGT TGGCCAGGCTGGTCTCAAACTCCTGACCTCGT GATCCGCCCTCCCCGGCCTCCCAAAGTGCTG
GGATTACAGGCGTGAACCACTGCT CCTGGCCGAGCTCAAAGCTTTTATCAACTGGCCCATGAGTCTGCACTGAGT CTTGAGGGGGGAGGTGAAATT AAATAGCCATAGAAAGTGCTTTTTAACAAACTTACTGTGTTTAAAGAGGAGGAGGAACCCCCAGATGAAGTAGGTGAC
GAGCACTCTTAGAAGTTACCATAAAAGTGAGTACAGTGTGAGCTGTAGATGTGTTTGCTGCAGAGGAGCATGTGAGGT TTGGAGGCGGATGTGTGGTGACTCCAGGGGATAGATTTGCAGAACCTAACGGAAAGGGAAGCTGT AAGGTGCAGGGCCAGAGGGAACCAGCAG
TAACCCTGATAGCGGTCTGTCATCTGTTCCTCT CGACTCTACAGCAGCGGACAACAGAACTTTGATTGCTGATTTCCATCAGTAAGCAGGCTTTGAAGCACACTTCCCCACCCCTAAAAAAAAACCACGTATTTTGGTAAATCCTATATATATTCTAATGTACTGTATGACAGTATAG
AACATGATTTTTAAAAGATGAGTT GGGAGGAGAAAAGGATAAAAGAAAAAATAAAAGAAGCATTAAGAATAAACAATT CGGATCTAGATTTTACTTTCTAGATGATTGACT CGAGGGTGGTGTAG TAAAAT CGCTTGTCT GGTCACAAACATTTGGCAGCAGAGCTTTTGATTA
GGTTCTTTGACAAAGCCTTCAGCACGTTAGAGTGGT TTTCACTAATAGTGTTTT GGAAAGAAAAGGTTGTCCATAGTTCTCTAGTTTGCT AAGATGATCAGCTACCCAGGAACGTGGAGTAACTT CCTCTTGTTTGTGGGAGCCCCGGGAATCTGTGCCTGGGGAGGGGAGAAGT
CTGTTAGGCTCTTGGATTGTGTGGAAGAAGGAGAAGTTGTGCCAGGCTACAGAATCCTGT GTTTGCACTGAGAAAACAGGATGGTACCTGACCTTCTCTGCATGGCTGTGAGATAGCTTAAAATAATTTCTTTT GTTTTTGATGAATATGAACAATATCTTAAAATTTTTGAGGCTA
AAAAAGTCTTGAAGGGATCCCTGAGGTATTTTCTTTGAAAGGTACTGGTGAAAATGAGTAACTTAACCTAAGGGTTTTTCTTTCTAATTTTATTTCCATTTAGTTCAATGACACTGT TAGTCTGGAGTGCTTGTCTTTGGGGGTATTCATCT CTTAGT TTTAAAGAGGAGTTGTTTGG
AGTACTGGCCGTAGAACAGATTGTTCT GACAGTTCCCTAAGT GTTACTAGT CTGAGCTGT GAGAATGCTCCT GAGCTTTTCCCTTAATGGGAAATAAAGATACTGAGTTGGAAGAAAACAGGT GG CTAACCATCATAGCGTGGCCAAGAAATGATCCTGGAGAAGACTTGGTAA
GACTTCATGGCCCATGCATGGCATAACAGAATCAATGTTCCTCTCTCATAATCTTTTCTCCTCTGAAACACTTTATACACT TAACCT GCAGCTCAGTTCTAGGCCTTTTTGTGT TACTGCTGTCACTAACCAAGGCAGAGTGAGACCTGAGT GATTTCCCTAACTCAGGGATGGCAGT

CGGGGGCGCTTTCTTCCCTCGGAGTGGAAAGATTCAGCCTGCGGAGTIGGTGTATGCTA CTCTTGAACTGTACAGCCCTTCATGACCCTTCCATGGGCTTGAATCCAGATGTGCAGTTTCCTTTGTATAATTAAAT ACTATCCTGGGCACTGATGATGAGTTTGAAATTATGT
GAAATTGCCCTGTGAAGTGTTT
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WHICH TECHNOLOGY?

The choice of technology fir detecting single nucleotide T‘;‘e Genome coverage

polymorphisms (SNPs) depends upon the application. :TaqMaﬂ ! 0%
] SNParray Ll ] Ll L 0.1%
:SNP array with imputation LL Ll | Ll L 0.5%

For GWAS / PGS we use ‘SNP array with imputation’ :Whole e omeseauenceES) B - ™

I Whole Genome Sequencing (WGS) s e e— <<,

=

( AALBORG PAGE
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GENOTYPING$

For GWAS/PGS we don’t need to analyse all 3 billion positions in
the human genome.

Instead, we can measure about 500,000 to 1 million genetic
variants that act as markers across the genome.

Because nearby variants are often inherited together, we can use
these markers to predict (“impute”) millions of additional common
variants — up to about 10 million in total.
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WHY DON’T WE NEED TO TEST EVERY
VARIANT?

Chromosome
The human genome has about 3 billion positions.
But many variants are inherited together. |
N Gene 1
Variants that tend to be passed on together are said to be in o Gene 2
linkage disequilibrium (LD). _ _
Linked loci

(Physical proximity)

AAAAAAA Linked train wagons
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WHAT IS LD?

If there is random relationship among alleles at the two loci
then the frequency of the haplotypes will be the product of the

—e Q frequencies of the two alleles: (a) Linkage equilibrium

- @ P(AB)=P(A)xP(B) & ©r
o —®
P(Ab)=P(A)xP(b) Br— ®

@ ®

P(aB)=P(a)xP(B) @- ®

(@) (B)
P(ab)=P(a)xP(b) = =

@) &)

—&

pa=05  Pug=0.25
pa = 05 PAb = 025
pg=05 P,=025

((‘ AALBORG pb = 0.5 Pab = 025 PAGE
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LD is just a way of describing how strongly two variants are correlated.
In practice, we use r? to say how well one variant predicts another

W H AT I S L D ? r’ =1 — perfect correlation (completely linked)

r’ = 0 — no correlation (completely independent)

(b) Linkage disequilibrium

When the association between alleles at two loci is non-
random they are said to be in linkage disequilibrium

The degree of LD can be measure in several ways — the
simples one is:

D:PAB_PAPB

@@@@@@@@

©000000s

If D=0, no LD, if D>0 LD

Adygei
== Basque

o
[v]

p 0.5 f—udD Decay with physical distance  ropuaton
B= VY- aB= VY- |

CEU
== French
==NLD
== Russian
Sardinian
= TS|
= TWN

Average LD

o
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IMPUTATION

USING HAPLOTYPES

The true haplotypes

This individual has
inherited a chromosome
with alleles A-T-C from one
parent, and G-C-A from the
other parent

( AALBORG
UNIVERSITY

We observe only the genotypes

A/G T/C C/A

Genotype data does not
carry information about
the haplotypes.

We do not know whether
A at SNP1 is coming from
the same parentas T or C

at SNP2

Different haplotypes
A C A
A C C
A T A
A C A
G C A
G C C
G T A
G T C

Phasing = estimate the most
likely haplotypes

PAGE
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IMPUTATION
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Genotypes
Study sample

Reference haplotypes

CGAGATCTCCTTCTTCTGTGC
CGAGATCTCCCGACCTCATGG
CCAAGCTCTTTTCTTCTGTGC
CGAAGCTCTTTTCTTCTGTGC
CGAGACTCTCCGACCTTATGC
TGGCATCTCCCGACCTCATGG
CGAGATCTCCCGACCTTGTGC
CGAGACTCTTTTCTTTTGTAC
CGACACTCTCCGACCTCGTGC
CGAAGCTCTTTTCTTCTGTGC

From a sequencing study

Study sample

Reference haplotypes

CGACATCTCCTTCTTCTCTGC
CGAGATCTCCCGACCTCATGG
CCAAGCTCTTTTCTTCTGTGC
CCAAGCTCTTTTCTTCTGTGC
CGAGACTCTCCGACCTTATGC
TGGCGATCTCCCGACCTCATGG
CGACATCTCCCGACCTTGTGC
CGAGACTCTTTTCTTTTGTAC
CCACACTCTCCGACCTCGTGC
CGAAGCTCTTTTCTTCTCTGC

Study sample

cgagAtctcccgAcctcAtgg
cgaaCGctcttttCtttcAtgg

Reference haplotypes

CCCCCCCCCGCAATTTTTTTT
CGACATCTCCCGACCTCATGG
CCAAGCTCTTTTCTTCTGTGC
CGAAGCTCTTTTCTTCTGTGC
CGAGACTCTCCGACCTTATGC
TGCGGATCTCCCCACCTCATGG
CGAGATCTCCCGACCTTGTGC
CGAGACTCTTTTCTTTTGTAC
CGAGACTCTCCGACCTCGTGC
CGAAGCTCTTTTCTTCTGTGC

PAGE
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GENETIC
PARAMETERS

© Separate Vg and Vg
© Heritability

© Genetic correlation
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COMPLEX TRAITS o
are complex...

Consumer

products
Specific .
. . external
Complex traits have a genetic environment | = .
component and an r\‘ | 4 Health rlsk

environmental component i " Internal and lmpact

A\ Diet acnwty = environment assessment
N Water “ |

The relative genetic — | \ |

contribution is called c //_\é e =

heritability. s \ -
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»;/ Urban @ é/

y enwronment G \
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| \ . .
Ve ! (Va+Ve) 'l external | '\ Transcriptomics

- Hli environment Metabolomics 4/ \
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the genetic predictor \ e 8
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MULTIFACTORIAL TRAITS
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GENETIC CORRELATION

® The genetic correlation refers to the genetic link between two traits, which can help elucidate the shared
biological pathways and/or causal relationships between them.

AALBORG
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A

Trait two

B

Trait two

Trait one

Trait one

Trait two

Trait one

Genetic correlation quantifies how much two traits share in
their genetic basis — not because of environment or chance,

but because the same DNA variants affect both.
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SESSION 1

© Complex traits

Most diseases are influenced by many genetic and
environmental factors — understanding their
complexity helps us predict risk more accurately

© Genetic variation

Individual differences in DNA underlie why people
respond differently to diseases and treatments.

© Haplotypes and LD

Pattemns of correlated variants (LD) allow us to identify
genetic regions associated with disease risk even
when the causal variant is unknown.

© Genetic parameters

Measures like heritability and genetic correlation help
quantify how much of disease risk is due to genetics
and how traits are biologically connected.
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PART 1 (15 min)
Make 3 groups ,,
QO Each group work with one exeruse e -
O Explain the concepts & discuss how =
-these concepts relates to IdEhtlflcatIOH‘_:'l._,f —
of genetic risk va rlants =

PART 2 (15 min) e e = e
'We make 3 new groups W|th 1 person from e =
each of the previous groups T
d Present key messenges from each
exercise . |
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AGENDA

10:30 —11:00 Session 2: From SNP to GWAS to disease risk
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SESSION 2

© Genetic associations

© Polygenic score

AAAAAAA
IIIIIIIIII




Monogenic disorders Common complex disorders

1 2

O 8O @,
e mE |

2 6

Mutation
Each genetic variant is both Each genetic variant is neither
necessary and sufficient necessary nor sufficient
Linkage analysis Association study
(pedigree) (unrelated population)

e What does association mean

( AALBORG PAGE
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ASSOCIATION

An association defines a relationship between two entity objects based on common attributes.

A A
®
e
. ® ®
é ®
® o @
o O
° o @
®
> >
. - No correlation
High positive
correlation

Is there an association between exposure and outcome?

( AALBORG PAGE
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ASSOCIATION NOT CAUSATION

Country Area Storks | Humans | Birth rate
(km®) | (pairs) (10%) (10*/yr)
Albania 28,750 100 3.2 83
Austria 83,860 300 7.6 87
Belgium 30,520 1 9.9 118
Bulgaria 111,000 5000 9.0 117
Denmark 43,100 9 5.1 59
France 544,000 140 56 774
Germany 357,000 3300 78 901
Greece 132,000 2500 10 106
Holland 41,900 4 15 188
Hungary 93,000 5000 11 124
Italy 301,280 5 57 551
Poland 312,680 | 30,000 38 610
Portugal 92,390 1500 10 120
Romania 237,500 5000 23 367
Spain 504,750 8000 39 439
Switzerland | 41,290 150 6.7 82
Turkey 779,450 | 25,000 56 1576
Table 1. Geographic, human and stork data for 17
European countries
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Teaching Statistics, 22: 36-38.

Matthews, R. (2000), Storks Deliver Babies (p= 0.008).

Birth rate (1000s/year)

1500

1000

500

B o
o
°
o ©
Lo
.o
'O,,
goo ©
] [ [ [ [ [ |
0 5000 15000 25000

Number of stork breeding pairs

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 2.250e+02 9.356e+01 2.405 0.0295 *
Storks  2.879e-02 9.402e-03 3.063 0.0079 **

Signif. codes: 0‘*** 0.001 **" 0.01 “* 0.05°."0.1“"1

N, 4 -
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@
IDENTIFY RISK VARIANTS

GENOME-WIDE ASSOCIATION STUDY (GWAS)

)
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Systematic hypothesis-free scanning of all

common genetic variants
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For each variant, plot the —log10(P-value) as

function of chromosomal position.

MANHATTAN PLOT

P=0.05 = -log10(0.05) = 1.3
P=0.001 = -log10(0.001)
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HYPOTHESIS TESTING

Null hypothesis (Hp) is true  Null hypothesis (Hy) is false

Reject null hypothesis (Hy) Type | error a Correct outcome
False positive True positive

Accecpt null hypothesis (H) Correct outcome Type Il error B
True negative False negative

The probability (P) of making a type | error is denoted by a; we reject the null hypothesis if the inferred P
value is less than the significance level («=0.05). l.e., the probability of rejecting the null hypothesis when

should be accepted.

Why multiple testing correction? If we test 500,000 SNPs, then by chance we expect 25.000 SNPs to be
significant (if «=0.05) - i.e., 25.000 false-positive associations.

One solution is to correct for number of tests performed; Bonferroni correction;
Corrected P-value = P X ngpgs < 0.05 OR —— =

Ntests
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—log,4(P - value)

MANHATTAN PLOT

Genome-wide significance level?
-adjust for no. of independent statistical tests
(1,000,000 independent genomic regions [LD])
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For each variant, plot the —log10(P-value) as
function of chromosomal position.

P=0.05 - -log10(0.05) =1.3
P=0.001 - -log10(0.001) = 3
P=0.000000005 -> -log10(0.000000005) = 8.3
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POWER IS EVERYTHING IN GWAS

OWER IS EVERYTHING

Schizophrenia

T A

Has high heritabilitet (h?= 0.85)
The population prevalence is 1%
Emerge in late teens
Molecular aetiology is unknown

AALBORG
UNIVERSITY

~log10(p)

~10910(p)

4y

24 -

21

10910 (p)

=910 (p)

the probability of detecting an effect, if there is
a true effect present to detect

depends among otherthings on sample size

7

24

21 4

18 4

110.000 people
108 genes !

320.000 people
287 genes !
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GENETIC RISK FOR
LUNG CANCER?

Vol 452|3 April 2008| doi:10.1038/ nature 06885 namre

LETTERS

A susceptibility locus for lung cancer maps to nicotinic
acetylcholine receptor subunit genes on 15925

10
o 9 EI
=) i okl
© g . ."~.. a 11 - (58081948 152036527 51317286
? 6 - .'.. . 13» 152656052 r5803'“9110519203 ';;;?322968
Q 5 '..... T g 0' rs17484235 prrvy SR
Vga T 7
2 41 4 "5,
o 3 . \-‘.’3 ir.....
S 2. 931 e,
14 ' 2 ta,
1 s Y %y
0 0- : ' ..'.-
S g 1
10 11 12 1314 151617 19 21 X “eniiomers 76.4Mb 76.49 Mb "o 7673Mb 768 Mp Loomere
...
Chromosome b IREB2 I.,_/O\{C(]gigg? PSMA4 » CHRNAS »{rm CHRNB4

A genetic studie of lung cancer (LC, 1989 cases and 2625
controls) found a nicotine receptor (CHRNA3/5) to be
associated with the risk of developing lung cancer.

Does that then mean that CHRNAJ3/5 is a risk loci for LC?

Risk loci for nicotine addition - addicted to smoking 2>
increase LC risk

«
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UNIVERSITY

s L L W . BTN

moe 1704 & )
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*0 59
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«

PREDICTING DISEASE
RISK FROM GENETIC
DATA

A “polygenic score” is one way by which people
can learn about their risk of developing a
disease, based on the total number of changes
(i.e., SNPs) related to the disease (NHI)
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DIFFERENT NAMES

BUT THE SAME

©® Polygenic risk score (PRS)

43
Liiid
M
A

© Polygenic score (PGS)
©® Genetic score (GS)
© Genetic risk score (GRS)

© Genetic value

#

= Match en.etic
© Genetic liability ‘!P rIMMMMMMMMMP ; me%rféi't?i“ﬁ'i@pe
® Breeding value kvaria 2

NHHHMMHMHMNP o

p f c genetic liability
anants)

——

AAAAAAA
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Personalised Medicine
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THE INHERENT DISEASE RISK
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THE INHERENT DISEASE RISK

AAAAAAA
IIIIIIIIII

Variation in the
number of risk
variants
9

Polygenic score
(PGS)



WHAT IS A PGS?

A RELATIVE RISK

SNP1 A (¢
4 Threshold
> zone L SNP2 T T
o
g Clinical
(i')- diabetes 1P SNPz A C
| \L SNP4 T A
R\ SNPs C ¢
Number of predisposing alleles

in genotype

How do we find the ’orange’ alleles?
((‘ g
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SNP-2

P val = <2e-16
200 —

WHAT IS A PGS?

180 —
b is the slope (effect
size) from reggresion

170

160

Height (cm)

150

140

“A PGS combines information from large - . .
numbers of markers across the genome The effect size of the SNP— ™ * aa
(hundreds to millions) to give a single obtain from the GWAS Genotype

numerical score for an individual’s risk for
developing a specific disease on the basis of
ping @ sp PGS = ) X, b

the DNA variants they have inherited.” /

The genotype of the individual for SNP i
(0, 1, 2 — counting the number of the alternative allele)

>
>

0
1
2

o &
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HOW TO COMPUTE A (simple) PGS?

SNPs Adams Genotypes Ref allele Altallele

SNP-1 TC T C
SNP-2 GG G T
SNP-3 CC A C
SNP-4 TG T G
SNP-5 AA A G

IIIIIIIIII




A LARGE PALETTE OF PGS METHODS

PGS —_ ZX,;bl-

BayeSC BVSR
NEG
2001 2011
BayesA, C+T
BayesB _ BayesCr,
Bayesian BayesD,BayesDn
Lasso

( AALBORG
UNIVERSITY

PRS-CS

LDpred lassosum  pRs CS-auto =7 <>
BSLMM LDpred-inf  SBLUP RSS LDE)rrleg-funct
MultiBLUP DPR SBavesR pSum
2D PRS CNN / PANPRS
2013 2015 2017 2019 2021
AnnoPred DNN
BayesR Malk et 2! PleioPred CTPR| SCT
BVR MTGBLUP So etal WMT-SBLUP NPSSDPR
JAMPred
DBSLMM
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WHY DIFFERENT PGS
SCORING METHODS?

Complex traits have different underlying genetic architectures

/7
0’0

some are influenced by <100 genetic loci
some are influenced by >1000 genetic loci
some loci have very small effects

some loci have moderate effects

correlation structure among loci (linkage disequilibrium)

The different scoring algorithms attempts to account for this.
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A LARGE PALETTE OF PGS METHODS

PGS —_ ZX,;bl-

BayeSC BVSR
NEG
2001 2011
“ESN
BayesA, { C+T )
BayesB ~ — 7 BayesCr,
Bayesian BayesD,BayesDn
Lasso

( AALBORG
UNIVERSITY

PRS-CS

LDpred lassosum RS CS-auto o f >
BSLMM LDpred-inf SBLUP RSS LDr_Jrrleg-funct
MultiBLUP DPR SBavesR pSum
2D PRS CNN / PANPRS
2013 2015 2017 2019 2021
AnnoPred DNN
BayesR Malk etal PleioPred CTPR | SCT
BVR MTGBLUP oS otal WMT.SBLUP NF’SSDPR
JAMPred
DBSLMM

PAGE
60

Ma, Y., & Zhou, X. (2021). Trends in Genetics, 37(11),995-1011.



«

CLUMPING AND THRESHOLDING (C+T)

0: Set LD (=0.8) and P

values (0.01)

1: Sort by P-value

2: Compute LD and select

variants based of thresholds

1st vatiant in LD-pair

SNP b ¢]
1 0.21 0.005
2 0.22 0.0048
3 0.25 0.0003
4 0.1 0.04
5 0.05 0.15
6 0.02 0.49
7 0.03 0.87
8 0.12 0.003
9 0.14 0.0034
10 0.18 0.0004
11 0.21 0.00003
12 0.12 0.15
13 0.14 0.12
14 0.03 0.84
15 0.02 0.32

SNP b p
11 0.21 0.00003
3 0.25 0.0003
10 0.18 0.0004
8 0.12 0.003
9 0.14 0.0034
2 0.22 0.0048
1 0.21 0.005
4 0.1 0.04
13 0.14 0.12
5 0.05 0.15
12 0.12 0.15
15 0.02 0.32
6 0.02 0.49
14 0.03 0.84
7 0.03 0.87

SNP b o] r2

11 0.21 0.00003

9 0.14 0.0034 0.74
2 0.22 0.0048 0.4
1 0.21 0.005 0.03
4 0.1 0.04 0.04
13 0.14 0.12 0.05
5 0.05 0.15 0.03
12 0.12 0.15 0.04
15 0.02 0.32 0.01
6 0.02 0.49 0.01
14 0.03 0.84 0.01
7 0.03 0.87 0.01

AALBORG
UNIVERSITY

Have LD>r?— ignore those
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CLUMPING AND THRESHOLDING (C+T)

0: Set LD (=0.8) and P

values (0.01)

1: Sort by P-value

2: Compute LD and select
variants based of thresholds

iriant in LD-pair

Have LD>r?— ignore those

SNP b ¢]
1 0.21 0.005
2 0.22 0.0048
3 0.25 0.0003
4 0.1 0.04
5 0.05 0.15
6 0.02 0.49
7 0.03 0.87
8 0.12 0.003
9 0.14 0.0034
10 0.18 0.0004
11 0.21 0.00003
12 0.12 0.15
13 0.14 0.12
14 0.03 0.84
15 0.02 0.32

SNP b p
11 0.21 0.00003
3 0.25 0.0003
10 0.18 0.0004
8 0.12 0.003
9 0.14 0.0034
2 0.22 0.0048
1 0.21 0.005
4 0.1 0.04
13 0.14 0.12
5 0.05 0.15
12 0.12 0.15
15 0.02 0.32
6 0.02 0.49
14 0.03 0.84
7 0.03 0.87

SNP b o] r2

11 0.21 | 0.00003

9 0.14 0.0034 1st ve
13 0.14 0.12 0.52

5 0.05 0.15 0.34

12 0.12 0.15 0.10

15 0.02 0.32 0.04

6 0.02 0.49 0.01

14 0.03 0.84 0.01

7 0.03 0.87 0.01

AALBORG
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CLUMPING AND THRESHOLDING (C+T)

0: Set LD (=0.8) and P

values (0.01)

1: Sort by P-value

2: Compute LD and select
variants based of thresholds

SNP b o] r2
11 0.21 0.00003
9 0.14 0.0034
13 0.14 0.12 1st va

riant in LD-pair

SNP b ¢]
1 0.21 0.005
2 0.22 0.0048
3 0.25 0.0003
4 0.1 0.04
5 0.05 0.15
6 0.02 0.49
7 0.03 0.87
8 0.12 0.003
9 0.14 0.0034
10 0.18 0.0004
11 0.21 0.00003
12 0.12 0.15
13 0.14 0.12
14 0.03 0.84
15 0.02 0.32

SNP b p
11 0.21 0.00003
3 0.25 0.0003
10 0.18 0.0004
8 0.12 0.003
9 0.14 0.0034
2 0.22 0.0048
1 0.21 0.005
4 0.1 0.04
13 0.14 0.12
5 0.05 0.15
12 0.12 0.15
15 0.02 0.32
6 0.02 0.49
14 0.03 0.84
7 0.03 0.87

Have LD>r?— ignore those

AALBORG
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CLUMPING AND THRESHOLDING (C+T)

0: Set LD (=0.8) and P

values (0.01)

1: Sort by P-value

2: Compute LD and select
variants based on LD

3: Compute PGS based on
effect sizes (b) and P-values

11 | 021 | 0.00003 | < u——
9 | 014 | 00034 | ——
— . :X11 X0.21+X9 XO.14‘

SNP b p
1 0.21 0.005
2 0.22 0.0048
3 0.25 0.0003
4 0.1 0.04
5 0.05 0.15
6 0.02 0.49
7 0.03 0.87
8 0.12 0.003
9 0.14 0.0034
10 0.18 0.0004
11 0.21 0.00003
12 0.12 0.15
13 0.14 0.12
14 0.03 0.84
15 0.02 0.32

SNP b p
11 0.21 0.00003
3 0.25 0.0003
10 0.18 0.0004
8 0.12 0.003
9 0.14 0.0034
2 0.22 0.0048
1 0.21 0.005
4 0.1 0.04
13 0.14 0.12
5 0.05 0.15
12 0.12 0.15
15 0.02 0.32
6 0.02 0.49
14 0.03 0.84
7 0.03 0.87
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CLUMPING AND THRESHOLDING (C+T)

Marginal R2
P threshold
Repeat for other P-value .0-*"
0.05
cutoffs (and LD values) Mo:
0.021 =?5
] Finding optimal r2 and P-cutoff
How does the PGS associate and a 9 I pin second cohort
with the disease PPy
&
Ytrait = PGS + ¢ 0.011 C+T 00014 *® o e Females
C+T 0.01 1 ® ¢ Males
C+T 0.1 e <
C+T0.54
C+T 0.7 1
C+T0.94
0.001 - T T
0.20 0.25 0.30

ADHD ASD EA Variance explained (R?)
AAAAAAA
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CLUMPING AND THRESHOLDING (C+T)

Method

0.8+
‘I‘ B stdcT
Clumping and Thresholding (C+T) and Stacked C+T | J[ D maxct
(SCT) . 7_‘ -[- lassosum
We compute C+T scores for each chromosome separately and for Q 'I'
several parameters: <
0.6
e Threshold on imputation INFO score INFO;within {0.3, 0.6,
0.9, 0.95}. ‘
e Squared correlation threshold of clumping r? within {0.01, oS - 1 ]
0 05 0 ]. 0 2 D 5 0 8 D 95} BRCA RA T1D T2D PRCA MDD CAD Asthma
. p Vo1, V&, Uoa, V.0, U. . Trait
e Base size of Clumping window within {50; 100r 200: 500}- Table 2. Optimal Choices of C+T Parameters
The window size w, is then computed as the base size divided Trait W, 2 INFO;  pr
by r2. For example, for r> = 0.2, we test values of w, within Breast cancer (BRCA) 2,500 0z 095  22x10°
{250, 500, 1000, 2500} (in kb). This is motivated by the Rheumatoid arthritis (RA) 200 05 005 7 5x10°2
fact that linkage disequilibrium is ll{lV&I'SE!lY proportional to Type 1 diabetes (T1D) TOKSOK . 001 090 2.6x10°
genetic distance between variants. : "
Type 2 diabetes (T2D) 625 0.8 0.95 1.1x10"
e A sequence of 50 thresholds on p values between the least
R R Prostate cancer (PRCA) 10K-50K 0.01 0.90 4.2%10°¢
and the most significant p values, equally spaced on a log-
1 Depression (MDD) 625 0.8 0.95 1.0x10"
og scale.
Coronary artery 526 0.95 0.95 3.5x107?

disease (CAD)
Thus, for individual i, chromosome k, and the four hyper-param-

Asthma 2,500 0.2 0.90 2.2%10
eters INFO; 12, w,, and p;; we compute C+T predictions

Choice of C+T parameters is based on the maximum AUC in the training set.
Hyper-parameters of C+T are the squared correlation threshold r? and the win-

(k) — § B..G dow size w, of clumping, the p value threshold pr and the threshold on the
Vi (INFOT’rf’ wc’pT) o ﬁf Gij quality of imputation INFO7. Choosing optimal hyper-parameters for C+T
j& Stumping (K INFOT,r2 w, use 63%-90% of the individuals reported in Table 1. Resulting predictions of
((‘ :::'VBEORRS( e ( ‘ ) maxCT in the test set are reported in Figure 2. PA %EG
Pi<pPT

Prive et al (2019) Am J Hum Gen, 105:1213-1221



WHAT DO YOU NEED?

1. A large well-powered 2. An independent cohort

GWAS for your trait of that has been genotyped
interest

. "
8 8 g
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g @ 8s §s 228 2 5 23 g8 - - -
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A LARGE PALETTE OF PGS METHODS

2001

BayesA,
BayesB

( AALBORG
UNIVERSITY

-- Require individual level data -- -- Require summary data --

(can be tricky because of GDPR)
PRS-CS

LDpred lassosum  pRs.CS-auto T;S -
LDpred-inf SBLUP RSS pred-func
BayesC BVSR BSLMM MUBLUP e . o |sBayesr S
NSE PANPRS
2011 2013 2015 2017 2019 2021
AnnoPred DNN
C+T BayesR Mak et al PleioPred CTPR | SCT
- BayesCr, MTGBLUP NPS
Bayesian BayesD,BayesDn BVR So etal WMT-SBLUP SDPR
Lasso JAMPred
DBSLMM
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OXFORD

COMMONLY USED METHODS -

GigaScience, 8, 2019, 1-6
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SESSION 2

© Genetic associations

By linking specific genetic variants to traits or
diseases, we can identify biological pathways and

potential drug targets.

© Polygenic score

Combining information from thousands of variants
allows us to estimate an individual’s genetic risk —
a key step toward personalised prevention and
treatment.

(/ AALBORG
UNIVERSITY







AGENDA

11:40-12:00 Common discussion and evaluation
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Join at menti.com | use code 77981843

Hvilken indsigt tager du med dig frai dag?

No questions from the audience!

Incoming questions will show up here so that you can answer them one by one.
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Choose aslide to present

What is personalised medicine?

Hvilken indsigt tager du med dig frai dag?

0 questions
0 upvotes
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EVALUATE POLYGENIC
PROFILES

y=Xb+Zc+e

y = phenotype; X = PGS; Z = covariates

Compare variance explained from the full model (with X+covariates)
compared to a reduced model (covariates only)

Variance explained (R?) for quantitative traits, and Nagelkerke’s R? for
binary traits (however, NagR2 is biased with disease prevalence!)
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EVALUATE POLYGENIC Rank individuals on score from highest ranked to lowest

_ 5
PROFILES e
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EVALUATE POLYGENIC
PROFILES

Odds ratio (OR)

Cut the distribution into deciles

Each decile will include both cases and controls
Odds of being a case in each decile

Odds ratio for each decile compared to the first decile
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Medium risk

I |
PGS deciles




Relative Risk

Distribution of polygenic scores

E 11.3% have higher

| polygenic scores
H

INTERPRETABILITY &
RISK COMMUNICATION

Number of people

5.0 25 0.0 25 5.0
Polygenic Score

Absolute Risk
© The risk associated with the PGS is a relative risk Distribution of polygenic scores

136.1% have
s trait
i

® People have suggested methods to convert relative PGS risk to absolute
risks ( )

Number of people

The relative risk may sound high, but the absolute risk is low

Hard to use meaningfully in clinical decisions without baseline risk

5.0 25 0.0 25 50

Polygenic Score
Effective for population stratification, less so for individual Of people with your genetics, In the general population,
prediction
© Lack of population transferability
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Pain etal 2022, EJHG, 3:339-348


https://opain.github.io/GenoPred/PRS_to_Abs_tool.html

LACK OF TRANSFERABILITY
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