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1 Introduction

This document is a supplementary companion to the scientific paper describing the gact (Genomic
Associations of Complex Traits) package, providing additional details, examples, and usage in-
structions.

In this document, we will cover how to:

o Initialise the gact database
o Populate the database with new GWAS summary statistics

Following this, we will demonstrate the main types of genomic analyses implemented in gact by
analysing type 2 diabetes (T2D) and coronary artery disease (CAD) using publicly available GWAS
summary data. This includes:

o Global and partitioned estimates of heritability (71% ~p) and genetic correlations (7,)
¢ Gene-level associations using the VEGAS-approach

o Gene-set enrichment analyses

o Statistical fine mapping of causal genetic variants

¢ Polygenic scores and their partitioning across biological-enriched gene sets

2 The gact database

We highly recommend users to create an R-environment using mamba, as shown below, to ensure
that all dependencies and package version are as required by the gact- and qgg-package (Rohde et
al., 2019, 2023).

conda install -n base -c conda-forge mamba

mamba create -n rgact \
r-base \
r-devtools \
r-remotes \
r-xml \
r-rcurl \
r-pkgbuild \
z1lib \
compilers \
make \
pkg-config \
libblas=#=*mkl \
-c conda-forge

At the time of writing this document, this installs

> sessionInfo()
R version 4.4.3 (2025-02-28)
Platform: x86_64-conda-linux-gnu



Running under: AlmaLinux 9.4 (Seafoam Ocelot)

2.1 Initialise the database

If the gact database has not been established this is the first step (see our GitHub for more details
gact package). This only has to be done, as more prior data and GWAS summary data easily can
be inserted into the database.

library(gact)
GAlist <- gact(version="hsa.0.0.1", dbdir="../gact", task="download")
saveRDS(GAlist, file=".../gact/hsa.0.0.1/GAlist_hsa.0.0.1.rds")

All subsequent data management steps and analyses requires genetic reference data. Here we utilise
the 1000G (1kG) data as our backbone. To use 1kG the following must be done:

# Download 1000G data (if not allready downloaded)
GAlist <- downloadDB(GAlist=GAlist, what="1000G")
saveRDS(GAlist, file=".../gact/hsa.0.0.1/GAlist_hsa.0.0.1.rds")

To be able to use the 1kG data, we first need to create a qgg Glist-object (please consult our
GitHub page for the qgg package for details).

#Prepare Glist for 1000G data for European ancestry (EUR)

# Marker IDs in database
rsids <- GAlist$rsids

# Define the file paths for the original bed/bim/fam files to read
bedfiles <- file.path(GAlist$dirs["marker"], "gl000_eur.bed")
bimfiles <- file.path(GAlist$dirs["marker"], "gl000_eur.bim")
famfiles <- file.path(GAlist$dirs["marker"], "g1000_eur.fam")

# Define the file paths for the filtered bed/bim/fam files to write
bedfiles_filtered <- file.path(GAlist$dirs["marker"], "g1000_eur_filtered.bed")
bimfiles_filtered <- file.path(GAlist$dirs["marker"], "g1000_eur_filtered.bim")
famfiles_filtered <- file.path(GAlist$dirs["marker"], "gl1000_eur_filtered.fam")

# Call the writeBED function to filter and write the data

writeBED (bedRead=bedfiles,
bimRead=bimfiles,
famRead=famfiles,
bedWrite=bedfiles_filtered,
bimWrite=bimfiles_filtered,
famWrite=famfiles_filtered,
rsids=rsids)


https://psoerensen.github.io/gact/
https://psoerensen.github.io/qgg/

# Prepare summary (i.e. Glist) for 1000G genotype data
Glist <- gprep(study="1000G EUR",
bedfiles=bedfiles_filtered,
bimfiles=bimfiles_filtered,
famfiles=famfiles_filtered)

# Save Glist for use later
saveRDS(Glist, file=file.path(GAlist$dirs["marker"],"Glist_1000G_eur_filtered.rds"))

The final step before ingesting GWAS summary data into the database is to compute sparse linkage
disequilibrium (LD) and LD scores. This is a computational demanding step when the number of
SNPs and samples become very large.

# Load GAlist
GAlist <- readRDS(file=".../gact/hsa.0.0.1/GAlist_hsa.0.0.1.rds")

# Load Glist with information about genotypes in 1000G
Glist <- readRDS(file=file.path(GAlist$dirs["marker"],"Glist_1000G_eur_filtered.rds"))

# Marker IDs used in sparse LD computation
rsids <- unlist(Glist$rsids)

# Compute Sparse LD matrix and LD scores for EAS and save for later use
Glist <- gprep(Glist, task = "sparseld", msize = 1000, rsids = rsids, overwrite = FALSE)

saveRDS(Glist, file=file.path(GAlist$dirs["marker"],"Glist_1000G_eur_filtered.rds"))

markers <- data.frame(rsids=unlist(Glist$rsids),
chr=unlist(Glist$chr),
pos=unlist(Glist$pos),
ea=unlist(Glist$al),
nea=unlist(Glist$a2),
eaf=unlist(Glist$af),
maf=unlist(Glist$maf),
map=unlist(Glist$map),
ldscores=unlist(Glist$ldscores))

rownames (markers) <- markers$rsids

fwrite(markers, file=file.path(GAlist$dirs["marker"],"markers_1000G_eur_filtered.txt.gz"))

2.2 Ingesting GWAS summary data into the database

When the gact-database has been established as shown above, it is time to start populating/ingested
GWAS summary data into the database. This task is done using the updateStatDB(), which input
all necessary data into the database. Before running updateStatDB() the stat-object should be
created which contains the GWAS summary data. Below we’ll showcase how this can be done for
the two example traits.



GAlist <- updateStatDB(GAlist = GAlist,

stat = stat,
source = "...",
trait = "...",
type = "...",
gender = "...",
ancestry = "..."
build = "...",
reference = "...
n = NA,

ncase = NA,
ncontrol = NA,
comments = "..."

)

H O H H K H HE K OH HE R H

R-object

markers file name

name of trait

quantitative or binary

male, female, or both
ancestry

genome build, GRCh37 or GRCh38
PMID

total sample size

if binary, how many cases

if binary, how many controls
comments

2.3 Example: Ingesting CAD and T2D GWAS summary data

For T2D we are using the GWAS summary data from Mahajan 2018 unadjusted for BMI and
without UK Biobank subjects (as this allow us to use the GWAS summary data later for constructing
PGS within UKB) (Mahajan et al., 2018). The T2D GWAS data was downloaded from Diagram
consortium (link). Importantly, the GWAS summary data must be in GRCH37 genome build (as
this is the genome build of 1kG), and the order and names of the columns in the stat-object should
be as shown below. A key feature of the updateStatDB-function is, that it aligns alleles and their

effects according to the reference genetic data within the database.

# Load GWAS data

fname_stat <- "./Mahajan.NatGenet2018b.T2D-noUKBB.European.zip"
stat <- fread(fname_stat, data.table = FALSE)

# Modify columns according to required format

# Subset and rename columns according to required format

stat <- stat[, c("SNP", "Chr", "Pos", "EA", "NEA", "Beta",

colnames(stat) <- c("marker", "chr",

# Update database

”pOS",

GAlist <- updateStatDB(GAlist = GAlist,

neau’

"SEH, "Pvalue")]

nneau, "b", "seb", npn)

source = "Mahajan.NatGenet2018b.T2D-noUKBB.European.zip",

stat = stat,
trait = "T2D",

type = "binary",
gender = "both",

ancestry = "EUR",
build = "GRCh37",

reference =
n = 456236,
ncase = 55927,

ncontrol = 400309,

comments =

"PMID:30297969",

"Exclude UK biobank",


https://www.diagram-consortium.org/downloads.html

writeStatDB = TRUE)

# Save updated database
saveRDS(GAlist, file = "./gact/hsa.0.0.1/GAlist_hsa.0.0.1.rds", compress = FALSE)

Beside the Mahajan et al. (2018) T2D GWAS, we also utilise the Cardiogram CAD GWAS (link).
The database contains a text-file that list all the GWAS summary data that has been ingested
within the database, as shown in Table S1.

Table S1: Example of the overview file generated by gact. For each GWAS/trait included in the database,
the table reports phenotype name, abbreviation, reference, year, sample size (N), and case-control break-
down where relevant, ancestry, genome build and possible user-defined notes.

id trait type gender ncase  ncontrol neff  reference ancestry  build comments
GWAS1 T2DM  binary  both 55927 400309  49071.27 PMID:30297969 EUR GRCh37  Exclude UKB
GWAS2 CAD binary  both 60801 123504  40743.15 PMID:26343387 EUR GRCh37  Exclude UKB

3 Estimating genetic parameters

3.1 Estimation from GWAS summary data

LD score regression (LDSC) is a statistical technique used to estimate the heritability and genetic
correlation among complex traits using GWAS summary statistics (Bulik-Sullivan et al., 2015).
It examines the relationship between LD scores — which reflect how strongly single nucleotide
polymorphisms (SNPs) are correlated with neighbouring genetic variants — and GWAS summary
statistics. This method distinguishes genuine polygenic signals from confounding factors such as
population stratification, thereby enabling the quantification of the contribution of common variants
to trait heritability (see Box 3.1).

Box 3.1: LDSC

LDSC is based on the observation that under a polygenic model, SNPs that are in high LD
with many other SNPs, tend to capture more heritability. So, their test statistics (e.g., x2)
tend to be inflated — not necessarily because they are causal, but because they ’'tag’ more
causal variants.

The expected GWAS test statistic for SNP j is modelled as:

NR¢

[E[X?] =1+ +a (1)
where:

. X? is the chi-squared statistic for SNP j,

e N is the GWAS sample size,

o h?is the SNP-heritability (heritability explained by all SNPs),

o U= r?k is the LD score of SNP j (sum of squared correlations with nearby SNPs),

e M is the number of SNPs analysed,



https://www.cardiogramplusc4d.org/

« a is the intercept, accounting for confounding effects (e.g., population stratification, cryp-
tic relatedness).
LDSC regresses the observed x? values on LD scores ¢;. The slope of this regression estimates

thz, from which A% can be obtained. The intercept, a estimates the average contribution of
confounding to test statistic inflation.

LDSC can also estimate the genetic correlation r, between two traits using a bivariate extension.
For SNP j, the expected product of Z-scores from two GWAS is:

T'g\/ Nlh%N2h§ ° fj

[E[lezzﬂ = M

+agp (2)

where:

o Zy; and Z,; are Z-scores for SNP j in traits 1 and 2,

o h?, h% are the SNP heritabilities for traits 1 and 2,

* 1, is the genetic correlation,

e N;, N, are the respective sample sizes,

o ¢ is the LD score,

e M is the number of SNPs,

e ay, is the intercept that captures shared confounding (e.g., sample overlap).
The slope of the regression of Z,;Z,; on {; is proportional to the genetic correlation r
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Figure: LDSC regression for estimating heritability and genetic correlation. (A) In univari-
ate LD score regression, chi-squared statistics from a GWAS are regressed on LD Scores to estimate
SNP heritability. The slope reflects the contribution of polygenic signal, while the intercept captures
inflation due to confounding. (B) In bivariate LD score regression, the product of Z-scores from two
GWAS is regressed on LD Scores to estimate genetic correlation. The slope corresponds to the genetic
covariance, standardized by the heritabilities of each trait.

LDSC yields valid estimates of SNP heritability and genetic correlation under several key assump-
tions:

1. Polygenic Architecture
o The trait is influenced by many SNPs with small effects (i.e., infinitesimal model).
o Causal variants are randomly distributed across the genome (or their distribution is



independent of LD score).

2. No Confounding Between LD Score and Bias
o Confounding factors (e.g., population stratification, cryptic relatedness, or batch effects)
affect all SNPs equally, regardless of LD Score.
o This ensures the intercept of the LDSC regression captures such confounding, while the
slope captures true heritability.

3. LD Scores are Accurate
o LD Scores are precomputed from a reference panel (like 1000 Genomes).
e The reference population’s LD structure must match the study population’s ancestry.

4. No Sample Overlap (for Genetic Correlation)
e When estimating genetic correlation between two traits, independent samples are pre-
ferred.
« Sample overlap leads to inflation in the covariance term unless properly modelled.

5. Independence Between LD and Effect Size
e There should be no systematic relationship between LD score and the magnitude of effect
sizes (i.e., SNPs in high-LD regions are not systematically more likely to be causal).

3.2 Example: Estimating genetic parameters for CAD and T2D

Estimating genetic parameters as SNP-based heritability and genetic correlation between two traits
is easily obtained with the gact-package as population-specific LD scores (¢ j) is present within the
database when the sparse LD-matrix has been computed.

# Load GAlist
GAlist <- readRDS(file=".../gact/hsa.0.0.1/GAlist_hsa.0.0.1.rds")

# Select GWAS study IDs
studyIDs <- c("GWAS1","GWAS2")

# Get GWAS summary statistics for studyIDs (e.g. z and n) from gact database
stat <- getMarkerStat(GAlist=GAlist, studyID=studyIDs)

# Get ldscores matched to the ancestry of GWAS data
ldscores <- getLDscoresDB(GAlist=GAlist, ancestry="EUR", version="1000G")

# Estimate heritability and genetic correlation using using ldsc

# and estimate standard error (SE) with jackknife bootstrap
fit.h2 <- ldsc(z=stat$z, n=stat$n, ldscores=ldscores, what="h2", SE.h2=T)
fit.rg <- ldsc(z=stat$z, n=stat$n, ldscores=ldscores, what="rg", SE.rg=T)

For CAD and T2D, the SNP-based heritability estimates are shown in Figure S1A, and the estimated
genetic correlation between the two traits is shown in Figure S1B.

In addition, we implemented a Bayesian version of standard LDSC. This allows for a flexible frame-
work to obtain partitioned estimates of SNP-based heritability (h%NKet ). By using the 1dsc function
with method = "bayesC", heritability estimation is performed using a BayesC prior within the BLR
framework.
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Figure S1: Estimated SNP heritability and genetic correlation from LDSC. (A) SNP heritability
(h2xp) for coronary artery disease (CAD) and type 2 diabetes (T2D), with 95% confidence intervals. (B)
Genetic correlation (7)) between CAD and T2D, estimated using bivariate LDSC. Error bars indicate 95%
confidence intervals.

An integral component of the gact package is its streamlined approach to linking genetic vari-
ants with diverse genomic features. For example, the command getMarkerSets(GAlist=GAlist,
feature="Regulatory Categories") maps genetic variants in the database to regulatory cate-
gories. These sets can then be used in ldsc to estimate the proportion of phenotypic variance
attributable to variants within predefined functional categories. Note that not all variants will
be assigned to a feature. Therefore, we recommend using the argument residual = TRUE, which
generates an additional marker set containing all variants not included in any predefined category.

# Partitioned h2 across chromosomes
sets <- getMarkerSets(GAlist=GAlist, feature="Chromosomes")
fit <- ldsc(z=stat$z, n=stat$n, ldscores=ldscores, sets=sets, what="h2",
method="bayesC", residual=TRUE)

# Partitioned h2 across regulatory categories
sets <- getMarkerSets(GAlist=GAlist, feature="Regulatory Categories")
fit <- ldsc(z=stat$z, n=stat$n, ldscores=ldscores, sets=sets, what="h2",
method="bayesC", residual=TRUE)

Figure S2 shows the partitioned SNP-based heritability (?z%NPm) estimates across chromosomes
(panel A) and regulatory categories (panel B) for CAD and T2D. As expected, heritability is
distributed across all chromosomes, with some variation in contribution size, likely reflecting differ-
ences in gene density, LD structure, and trait architecture. Partitioning by regulatory annotations
highlights that variants located in promoter-flanking regions and enhancers explain a disproportion-
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Figure S2: Partitioned SNP heritability across genomic features for CAD and T2D. (A)
Chromosome-specific SNP heritability estimates forléoronary artery disease (CAD) and type 2 diabetes
(T2D). Heritability estimates are based on stratified LD score regression and reflect the proportion of
total SNP-based heritability attributed to each chromosome. (B) SNP heritability attributed to selected
regulatory element annotations, including promoters, enhancers, and transcription factor binding sites.
Estimates are shown separately for CAD and T2D.



ately large share of the total heritability. These findings are consistent with the hypothesis that
regulatory elements play a key role in the genetic architecture of cardiometabolic traits.

4 Gene-level association

4.1 From associated genetic variants to gene level associations

In GWAS, individual SNPs may not reach genome-wide significance due to small effect sizes or in-
complete tagging. However, aggregating evidence across SNPs within a gene can reveal associations
at the gene level that would otherwise be missed. But SNPs are not independent; LD induces cor-
relation. Simply summing test statistics (e.g., x?-square values) would inflate the type I error rate
if correlations are ignored. VEGAS (Versatile Gene-based Association Study) combines SNP-level
test statistics within a gene, accounting for LD via the covariance of the Z-statistics (Liu et al., 2010;
Mishra & Macgregor, 2015). The gene-level test statistic is a quadratic form in correlated standard
normals. While early versions relied on simulations, modern implementations use saddlepoint (see
Box 4.1) approximations for computational efficiency and accuracy, especially for small P-values.

Box 4.1: Saddlepoint Estimation

The term comes from saddlepoint integration in complex analysis, where one evaluates an
integral by expanding the exponent of a function around a saddlepoint: a point where the first
derivative is zero, but the second derivative is not.

In statistics, the saddlepoint is a value 5 that satisfies a particular equation involving the
cumulant-generating function (CGF), which is a key part of the approximation. Note, the
moment-generating function (MGF) of a random variable X is:

Mx(€) = E[e**] ®3)
The cumulant-generating function is simply the logarithm of the MGF:

Kx(§) = log[E[egx} = log Mx (&) (4)

This is defined for values of £ such that the expectation exists. The CGF has a very useful
property: its derivatives at zero give the cumulants of the distribution.
For example:

o K%(0) = mean of X

o K%(0) = variance of X

. K§§”>(0) = third cumulant (related to skewness)

. Kg?)(O) = fourth cumulant (related to kurtosis)

Saddlepoint approximation is especially useful when:
o The statistic of interest is a nonlinear function of many random variables (e.g., quadratic
forms like sums of correlated chi-squares).
¢ You need accurate P-values in the extreme tail of a distribution (where simulation or
standard approximations like normal or chi-squared fail).
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o Computational efficiency matters (e.g., evaluating P-values for thousands of genes in a
GWAS).

Suppose you have a statistic T, and you want to compute its right-tail probability:
P(T > 1) (5)
If T has a CGF K (€), then the saddlepoint £ is the solution to:

K(€) =t (6)
Then define:
w = sign(é)y/2(6t — K(€)u = &/ K (§) (7)
The saddlepoint approximation to the one-sided tail probability is:
1 1
P(T 2 t) ~1-0(w) + () (1 — ) 0

Where ®(w) is the cumulative distribution function (CDF) of the standard normal, and ¢(w)
is the probability density function (PDF) of the standard normal.

. J

In VEGAS, the gene-level test statistic is a sum of correlated x? statistics, each corresponding to
SNP-level Z-statistics within a gene region. Specifically, the gene-level statistic is:

Ty =Y 22 9)
=1

where Z; ~ N(0,1) under the null, and the vector Z = (Z,,Z,, ..., Z,,)" follows a multivariate
normal distribution with covariance matrix ¥, reflecting LD among SNPs in the gene.

The null distribution of T, is not simply x?2, because of the correlation among SNPs (i.e., LD). The
original VEGAS approach simulated this null distribution by drawing thousands of multivariate
normal vectors Z®) ~ N (0, %) and computing:

1 =3 (2 (10

=1

This is computationally expensive, especially for many genes or very low P-values. To address
this, the recent update of VEGAS uses the saddlepoint approximation (SPA) to obtain accurate
P-values analytically, avoiding costly simulations.

Let’s denote the observed statistic as T; = ¢t. We aim to compute:

p=P(Tg =1 (11)

12



Since T is a quadratic form in normal variables with correlation X, its distribution is a weighted
sum of x? variables. Denote the eigenvalues )y, ..., A, of 3, then:

To 23 A3 0) (12)

The cumulant generating function (CGF) of T:

N[ =

m
K(§) =— E;IOg(l —26))) (13)
=
This is defined for £ < ﬁ, where A, is the largest eigenvalue.
The SPA approximation of P-value:
Define:
. é: the saddlepoint, solution to K’(g) =t
- w=sign(§)/2(ét — K(€))
« u=&/K7(E)
Then, the saddlepoint-approximated one-sided P-value is:

P(Ts > 1) ~ 1— d(w) + ¢(w) (i _ %) (14)

where:

e ®(.) is the standard normal CDF,
e ¢(+) is the standard normal PDF.

This gives an accurate and fast P-value even for small P-values and avoids the need for simulation.

4.2 Example: Genes associated with T2D and CAD

We performed gene-level association analyses for T2D and CAD using the VEGAS method (with
saddlepoint approximation), which aggregates SNP-level association signals while accounting for
LD within genes. This approach enables identification of genes that harbour multiple modest-effect
variants contributing to disease risk, complementing traditional single-variant analyses.

# Load GAlist and Glist with information on 1000G matched to the ancestry of GWAS data
GAlist <- readRDS(file="./gact/hsa.0.0.1/GAlist_hsa.0.0.1.rds")
Glist <- readRDS(file.path(GAlist$dirs["marker"],"Glist_1000G_eur_filtered.rds"))

# Extract gene-marker sets (include markers 40kb/10kb upstream/downstream)
markerSets <- getMarkerSets(GAlist = GAlist, feature = "Genesplus")

13



# Select studyl
studyID <- "GWAS1"

# Get GWAS summary statistics from gact database
stat <- getMarkerStat(GAlist=GAlist, studyID=studyID)

# Check and align summary statistics based on marker information in Glist
stat <- checkStat(Glist=Glist, stat=stat)

# Gene analysis using VEGAS
res <- vegas(Glist=Glist, sets=markerSets, stat=stat, verbose=TRUE)

filename <- file.path(GAlist$dirs["gsea"], pasteO(studyID, "_vegas.rds"))
saveRDS(res,file=filename)

Gene-level associations with T2D and CAD
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Figure S3: Gene-level associations for T2D and CAD. Genes (points) are coloured by their significant
association with CAD, T2D or both.

Our results highlight several genes exhibiting significant associations with T2D and CAD (Figure
S3), including both shared and trait-specific loci, thereby providing insights into the underlying
genetic architecture and potential biology involved in cardiometabolic disease etiology.
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5 Gene set enrichment analyses

5.1 From genes to gene sets

To further interpret gene-level associations and uncover the biological pathways underlying com-
plex traits, gene set enrichment analysis is a widely used strategy. In the gact package, we have
implemented a Bayesian version of MAGMA, extending our recent methodological work based on
Bayesian Linear Regression (BLR) models (Gholipourshahraki et al., 2024). This approach tests
whether predefined gene sets, such as biological pathways, functional annotations, or tissue-specific
gene expression profiles, are enriched for genetic association signals. Importantly, it accounts for
differences in gene size, LD structure, and uncertainty in gene-level effect estimates, providing a
more robust and interpretable framework for enrichment analysis.

Traditional enrichment methods often rely on binary thresholds (e.g., selecting the top n significant
genes), potentially discarding valuable information. In contrast, BLR-MAGMA adopts a Bayesian
framework that models the full posterior distribution of gene-level effects, allowing more nuanced
inference and potentially improved power, particularly for highly polygenic traits.

Box 5.1: The BLR-MAGMA Model

The foundation of the model is a linear regression framework that relates per-gene association
statistics to gene set membership. Let y € R™ denote the vector of gene-level statistics (e.g.,
Z-scores), where n is the number of genes. The linear model is expressed as:

y=XB+e (15)

where,
e X €{0,1}™™ is a binary design matrix indicating whether gene i belongs to gene set j
o B € R™ is the vector of gene set effects
o £~ N(0,0%1) is the residual noise

To regularize this model, we assume a BayesC prior on the gene set effects:

Bj~ (1 —m)dy+mN(0,03) (16)

where §, is a point mass at zero and m controls the expected proportion of non-zero effects
(m = 0.001 as default). The variance parameter (T% follows an inverse-chi-squared prior. This
spike-and-slab prior enables automatic sparsity and uncertainty quantification over gene set
inclusion.

For multi-trait analysis, the model is extended as:

T -1 reT
2= (70 ] +1evet) [0 ()

Here, V8 and Ve are covariance matrices for the gene set effects and residuals, respectively.
These matrices allow for shared effects across traits and account for correlated errors, offering
increased power in identifying gene sets with pleiotropic effects.

2
Vﬁz[(’ “ ”@12}, Ve=["251 ”212] (18)
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Both VB and Ve follow inverse-Wishart priors, allowing for adaptive regularization and
borrowing of information across traits.

The BLR model is estimated using Markov Chain Monte Carlo (MCMC) via the ‘blr() function
from the ‘qgg‘ package. For both single- and multi-trait models, we used 3,000 iterations with
a b00-iteration burn-in period, and confirmed convergence across multiple chains. Our imple-
mentation supports both fixed and user-defined gene sets, and allows joint modeling of multiple
traits, making it well-suited for uncovering shared pathways across related cardiometabolic

diseases.
A\ J

5.2 Example: Shared reactome pathways associated with T2D and CAD

To demonstrate the utility of our Bayesian gene set enrichment approach, we applied BLR-MAGMA
to a joint analysis of T2D and CAD. These cardiometabolic diseases are known to share genetic
architecture and overlapping biological mechanisms. Using gene-level association statistics derived
from VEGAS, we tested for enrichment across curated gene sets from the Reactome database—
representing well-defined biological pathways and cellular processes. By leveraging the multi-trait
BLR model, we account for genetic correlation between traits and enable shared signal detection
across traits while preserving trait-specific resolution (see Figure S4 ). This joint modelling increases
power to identify pathways involved in pleiotropic effects and may highlight key biological functions
underpinning both disorders.

6 Statistical fine mapping

While genome-wide association studies (GWAS), gene-level association testing, and gene set enrich-
ment analyses provide valuable insights into the biological mechanisms underlying complex traits,
they do not typically pinpoint the specific causal variants driving these associations. This is a key
limitation, as the strongest association signals often arise from non-causal variants in LD with the
true causal ones.

Statistical fine mapping aims to resolve this uncertainty by estimating the probability that each
genetic variant is causal, given the observed association signals and the LD structure among variants.
This process helps to prioritize a smaller subset of variants - often referred to as a credible set -
that are most likely to have functional effects on the trait. By moving from broader association
signals to likely causal variants, fine mapping provides a critical step toward functional validation
and therapeutic targeting.

In the context of our analysis, fine mapping complements the earlier steps by refining the signals
observed at the gene and pathway levels. While gene-based tests aggregate association signals
across a gene region, and pathway analyses evaluate enrichment across predefined gene sets, fine
mapping helps identify the precise variants that may be responsible for driving these signals. This
layered approach—from genome-wide to variant-level resolution—supports a more interpretable and
actionable understanding of the genetic architecture of complex diseases such as T2D and CAD.
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Figure S4: Top Reactome gene sets identified by multi-trait BLR-MAGMA analysis of T2D
and CAD. The heatmap shows the posterior inclusion probability (PIP) for each gene set—trait pair. Only
gene sets with PIP > 0.9 in at least one trait are shown. Color intensity reflects PIP, while numeric labels
indicate exact values. Rows are sorted by maximum absolute effect size across traits. An annotation bar
indicates the number of genes per pathway.
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6.1 Bayesian linear regression models for fine mapping

To improve resolution in identifying causal variants, we employed a statistical fine-mapping frame-
work based on Bayesian Linear Regression (BLR) models, as described in our recent work (Shrestha
et al., 2025). BLR models provide a flexible and principled way to jointly model the effects of mul-
tiple genetic variants within a locus while accounting for LD and polygenicity. This stands in
contrast to traditional single-SNP analyses, which often yield inflated signals due to modelled LD
structure.

The core of the BLR approach is a multiple regression model:

y=XB+e (19)

where y is a vector of phenotypic values (or estimated SNP effects from GWAS summary statistics),
X is the genotype matrix, 3 represents the vector of SNP effect sizes, and € ~ N (0,0%I) denotes
the residual errors.

To enable variable selection and shrinkage, we use the BayesC prior for SNP effects:

0 with probability 1 —
Bj ~ { (20)

N(0, 0[23) with probability 7

This spike-and-slab prior assumes that only a small proportion 7 of variants have non-zero effects,
allowing the model to distinguish between likely causal and non-causal variants. The prior on 0[23 is
typically an inverse chi-squared distribution, and inference is performed using Markov Chain Monte

Carlo (MCMC) sampling.

An important output of this framework is the Posterior Inclusion Probability (PIP) for each variant,
defined as the proportion of MCMC iterations in which the variant is included in the model. PIPs
provide a direct probabilistic measure of the likelihood that a variant is causal, facilitating the
construction of credible sets—minimal subsets of variants that together account for a predefined
proportion (e.g., 95%) of the posterior probability.

Compared to existing fine-mapping approaches, BLR models offer several advantages:

o Joint modelling of all variants in a region, which improves resolution in high LD regions.

¢ Robust handling of multiple causal variants within a locus.

o Flexible priors that can be tailored to different assumptions about genetic architecture.

o Computational scalability via the gact package, which integrates summary statistics and
reference LD panels.

Overall, this Bayesian fine-mapping approach provides a powerful tool for prioritizing candidate
variants for downstream functional studies and integrates seamlessly with earlier gene- and pathway-
level analyses.

Fine mapping is particular sensitive to mismatch in LD between LD reference panel and the GWAS
summary statistic LD (please see Shrestha et al. (2025) for discussion on this). In gact we handle
this by using MCMC eigen value decomposition, which performs robust fine mapping even on
summary statistics from GWAS meta analyses where the LD is often different than the reference
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LD used. This can be specified by algorithm="mcmc-eigen" which we highly recommend users to
use.

6.2 Example: Fine mapping of T2D and CAD loci

Having established trait-relevant genes and biological pathways through gene-level association and
enrichment analyses, we next sought to pinpoint the specific genetic variants that may drive these
associations. To this end, we applied our Bayesian fine-mapping framework to the T2D and CAD
summary statistics. Fine mapping enables the identification of credible sets of variants that are most
likely to have a causal impact on disease risk, helping to disentangle true signals from correlated
non-causal variants in regions of high linkage disequilibrium. By estimating posterior inclusion
probabilities (PIPs) for each variant, our approach provides a probabilistic ranking of candidate
causal variants and refines the search space for downstream experimental validation. This step is
essential to bridge statistical association with biological mechanism and therapeutic target discovery.

For this analysis, we estimated LD using genotypes from the White-British, unrelated subset of the
UK Biobank. To ensure computational efficiency and reduce redundancy due to LD, we partitioned
the genome into approximately independent LD blocks using a custom algorithm. Specifically, we
developed a function (createlDsets) that identifies local minima in smoothed LD scores (com-
puted using a rolling average) as candidate boundaries between LD blocks. This method prioritizes
genomic regions with consistently low LD as natural split points while enforcing constraints on
minimum and maximum block size. The resulting LD sets provide a flexible and data-driven foun-
dation for modular fine-mapping across the genome, enhancing both resolution and computational
tractability.
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Figure S5: Number of fine-mapped credible sets per chromosome for T2D and CAD. Bar plot
showing the number of distinct credible sets identified through Bayesian fine-mapping across autosomal
chromosomes for type 2 diabetes (T2D, dark blue) and coronary artery disease (CAD, light blue). Each
bar represents the count of credible sets on a given chromosome, with colors distinguishing the two traits.
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We identified 169 credible sets for T2D and 128 credible sets for CAD (see Supplementary Tables
SX and SXX), each representing a genomic region with a high probability of containing one or more
causal variants. These credible sets provide a more precise localization of genetic signals beyond
traditional GWAS loci, and facilitate downstream interpretation and functional characterization.
The distribution of credible sets across chromosomes is summarized in Figure S5, highlighting both
shared and trait-specific patterns of genetic architecture.
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Figure S6: Fine-mapping locus plot of chromosome 15 for Type 2 Diabetes (T2D). This plot
displays association signals across the chromosome 15 locus, highlighting single nucleotide polymorphisms
(SNPs) with their posterior effect sizes (colored and sized by Bayesian marker effect estimates). The x-axis
represents genomic position (Mb), and the y-axis shows -logl0 P-values from GWAS summary statistics.
Credible set SNPs with high posterior inclusion probabilities are emphasized to pinpoint likely causal
variants. Key genes within these two loci, potentially implicated in T2D pathogenesis, are annotated on
the plot.

As an illustrative example of our fine-mapping results, Figure S6 displays the locus plot for chromo-
some 15 in the T2D analysis, highlighting two distinct credible sets. These sets localize association
signals to genomic regions containing the gene INSYNI in one set, and PEAK1 and HMG20A in
the other CS.

Among the fine mapped loci we found 3 unique SNPs to be shared among T2D and CAD. In
addition, among all the identified CS, 84 genes were tagged by a CS for both T2D and CAD.

7 Polygenic scoring

7.1 Global and pathway-specific PGS

Polygenic scores (PGS) quantify an individual’s genetic propensity for a given trait or disease by
aggregating the effects of many genetic variants into a single predictive measure. As complex traits
such as type 2 diabetes (T2D) and coronary artery disease (CAD) are influenced by thousands of
small-effect variants, PGS have become an essential tool for risk prediction, genetic stratification,
and personalized medicine.
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Traditional PGS methods treat all associated variants equally, regardless of their biological con-
text. However, recent advances suggest that biologically informed or pathway-partitioned PGS can
provide additional insights into the underlying aetiology of disease, enhance interpretability, and
potentially improve predictive performance. Partitioned PGS allow us to investigate how specific
molecular pathways or regulatory annotations contribute to overall genetic risk, helping to dissect
the polygenic architecture of complex traits.

Box 7.1: Statistical Models for Polygenic Score Construction

Clumping and Thresholding (C+T)

The classic PGS approach is based on a two-step clumping and thresholding procedure:
o Clumping: Select the most significant variant in a region and remove nearby variants in
high linkage disequilibrium (LD), typically using a predefined r? threshold and window

size.
o Thresholding: Define a P-value threshold Pr below which SNPs are included in the score.
The polygenic score for individual ¢ is computed as:

PGS, => B;-G, (21)
j=1

Where:

» G,; is the genotype of individual i at SNP j,

o Bj is the GWAS-derived effect size estimate,

e and m is the number of included SNPs after clumping and thresholding.
While straightforward and computationally efficient, C+T methods do not fully account for LD
or estimation uncertainty and may underperform in highly polygenic settings.

Bayesian Shrinkage Models

Bayesian models offer a more principled framework by explicitly modeling uncertainty in SNP
effects and the LD structure. In this context, we focus on BayesC and BayesR priors, both
implemented in our ‘gact‘ package for PGS construction.

BayesC assumes that only a small proportion of SNPs have non-zero effects. This is modelled
via a spike-and-slab prior:
0 with probability 1 — 7
B~ T o (22)
N(0,03) with probability =

Where:

 f; is the true SNP effect,

o 7 controls sparsity (typically small, e.g., 0.01),

o O’% is the variance of non-zero effects.
This model allows joint estimation of SNP effects and borrowing of information across markers
via LD.
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BayesR extends BayesC by modelling SNP effects as a mixture of multiple normal distributions:

K
By~ Y me N(0,0) (23)
k=1
Where:
o 7, are the mixture proportions (e.g., for null, small, medium, and large effects),
o 0?2 are the corresponding variances,
o K typically equals 4, with one component fixed at 2 = 0 for null effects.
This richer prior allows more flexible modelling of the heterogeneity in effect sizes, improving
both estimation accuracy and predictive performance in polygenic traits.

Bayesian methods yield posterior mean effect estimates, which can be used directly to construct
PGS:

PGS, =) j=1"E[8)]- G, (24)

Pathway-Partitioned PGS

Using the gene set annotations available within gact, we can partition the genome into biolog-
ically meaningful subsets, such as Reactome pathways, tissue-specific gene sets, or regulatory
features. For each subset, a pathway-specific PGS is computed:

PGSy =" j € S,E[8;] - Gy (25)

Where:
o S, is the set of SNPs linked to pathway &,
o PGSEM represents the contribution from pathway k to the individual’s total genetic liabil-
ity.
This approach enables the dissection of genetic risk by biological function, facilitating both
mechanistic understanding and trait subtyping.

. J

7.2 Polygenic prediction of T2D and CAD

We computed polygenic scores (PGS) for T2D and CAD using the Bayesian linear regression (BLR)
output from fine-mapping. Fine-mapping - and, consequently, the accuracy of polygenic prediction
- is sensitive to misspecified linkage disequilibrium (LD). This is particularly relevant when using
GWAS summary statistics from meta-analyses, where LD mismatches between reference panels and
summary data may occur. We, and others (Shrestha et al., 2025; Wu et al., 2025), have proposed
using the MCMC eigenvalue decomposition to address these discrepancies.

Importantly, the precision of LD estimation also depends on minor allele frequency (MAF). To mit-
igate LD misspecification, we performed BLR-based fine-mapping within predefined LD sets, using
our built-in function “createLDsets’. This function partitions genetic variants into approximately
independent LD blocks based on smoothed LD scores. It identifies regions of low LD via a moving
average and defines genome-wide split points while avoiding overly close cuts. These LD blocks are
well suited for downstream applications such as fine-mapping, PGS construction, and enrichment
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testing, where LD independence is crucial for statistical validity.

For comparison, we evaluated prediction performance using both our custom-defined LD sets and
those generated by the algorithm from Berisa and Pickrell (Berisa & Pickrell, 2015). Their method
infers approximately independent LD blocks by analysing the patterns of correlation between ge-
netic variants (7?) in population-scale reference panels. Specifically, the genome is partitioned by
identifying local minima in a smoothed r? correlation matrix, effectively pinpointing recombination
cold spots that define block boundaries.
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Figure S7: Predictive performance of polygenic scores (PGS) for coronary artery disease
(CAD) and type 2 diabetes (T2D). The accuracies are summarised across different linkage disequilib-
rium (LD) reference panels and minor allele frequency (MAF) thresholds. Left panel shows area under the
curve (AUC); right panel shows Nagelkerke’s R2. Points represent model performance using UK Biobank
(UKB) or Pickrell LD reference sets, with MAF thresholds of 0.01 or 0.05. Colors indicate the trait predicted:
CAD (blue) and T2D (orange).

From Figure S7, it is evident that both the definition of LD sets and the MAF cut-off used for
selecting genetic variants to estimate LD strongly influence the subsequent accuracy of polygenic
prediction.

We further explored the genetic architecture of T2D by constructing pathway-partitioned PGS us-
ing Reactome-defined pathways. This approach allows us to evaluate whether specific biological
processes disproportionately contribute to disease risk. A total of 33 pathways showed significant en-
riched PGS in T2D patients compared with controls S8, highlighting distinct molecular mechanisms
associated with disease susceptibility. By integrating pathway-level information, our framework en-
ables biologically interpretable PGS analyses that can inform downstream functional studies and
enrichment tests.

8 Maintaining and updating the gact package

The gact package has been designed with modularity and flexibility to support continuous integra-
tion of new data resources and methodological advances. Below, we outline recommended practices
for maintaining and updating the package. The package has two key features:

1. Preprocessing of GWAS summary statistics, and
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Figure S8: Pathway partitioned polygenic scores (PGS) for type 2 diabetes (T2D). Enrichment

of genetic burden across top 20 Reactome pathways in T2D patients compared to controls; significantly
enriched pathways are highlighted in orange.

24



2. Linking common genetic variation to a range of biological annotations and features (e.g.,
genes, gene sets, pathways, and drug targets).

In the earlier sections, we demonstrated how the database can be updated with new GWAS summary
statistics. For example:

GAlist <- updateStatDB(GAlist = GAlist,
stat = stat,
source = "Mahajan.NatGenet2018b.T2D-noUKBB.European.zip",
trait = "T2D",
type = "binary",
gender = "both",
ancestry = "EUR",
build = "GRCh37",
reference = "PMID:30297969",
n = 456236,
ncase = 55927,
ncontrol = 400309,
comments = "Exclude UK biobank",
writeStatDB = TRUE)

Similarly, existing GWAS summary data can be removed from the database using:

When the database is initialized for the first time, not all available gene sets are necessarily included.
To add or update gene set annotations in the database, users can call the createMarkerSetsDB()
function. The what argument can be used to specify which specific annotations should be added
or refreshed:

GAlist <- createMarkerSetsDB(GAlist = GAlist, what="reactome")
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