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MULTIFACTORIAL 

INHERITANCE

❖ Monogenic (single gene/variant)

❖ Polygenic (multiple gene variants at the same time)

❖ Multifactorial (multiple gene variants + environment variation)
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MULTIFACTORIAL TRAITS

Continous variation

Categorical variation

Dichotomous outcome
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LIABILITY  ( TH RE S HO LD)  MODEL

Liability model

Only individuals with a liability 

over a certain threshold 

will become affected

The sum of many genetic 

variants with small effect/risk.

Each locus follow Mendelian 

inheritance pattern, although 

the trait does not
Few risk alleles Many risk alleles
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GENETIC VARIATION

Multifactorial traits are caused

 by the sum of MANY variants

exherting small effects
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MULTIFACTORIAL TRAITS

Multifactorial traits = polygenic effect + environmental effect

VP = VG + VE

VP = Va + Vd + Vi + Ve

H2= VG / (VG +VE)

h2= Va / (Va +VE)

External effects that modulates the

phenotypic value.

… or things that we cannot explain

many genes/alleles

40%

30%

20%

10%

Ve Va Vd Vi
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MULTIFACTORIAL TRAITS

Environmental variance (non-genetic factors) blurs phenotypic classes
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MULTIFACTORIAL TRAITS

Genotypic and environmental variance creates infinite many phenotypic classes
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BROAD-SENSE HERITABILITY

Broad-sense heritability (𝑯𝟐) describes the proportion of the phenotypic variance 

that is explained by genetic difference variation.

𝑉𝑃 = 𝑉𝐺 + 𝑉𝐸

𝐻2 =
𝑉𝐺

𝑉𝑃
=

𝑉𝐺

𝑉𝐺 + 𝑉𝐸

𝑯𝟐 can take values between 0 and 1:

𝐻2 = 0→ all variation is due to environmental variation

𝐻2 = 1→ all variation is due to genetic variation
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USING TWINS TO ESTIMATE 𝐻 2  

Monozygotic twins (MZ): Difference in VP is VE 

Dizygotic twins (DZ): Difference in VP is VG + VE

Compare MZ [𝑽𝐞] and DZ [𝑽𝑮 + 𝑽𝑬] twins – the difference is 𝑽𝑮
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USING TWINS TO ESTIMATE 𝐻 2

Q UAN TITATI V E CO MP LE X  TR AIT S

𝐻2 = 2(𝑟𝑀𝑍 − 𝑟𝐷𝑍)

All phenotypic variation between MZ is 

environment, whereas all phenotypic 

variation between DZ is both

Thus, the difference is genetic variation

Because DZ share 50% of 
the genetic material
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USING TWINS TO ESTIMATE 𝐻 2

DI CHO TO MOU S  CO MP LE X  T RAI TS

𝐻2 =
𝐶𝑀𝑍 − 𝐶𝐷𝑍

1 − 𝐶𝐷𝑍

Concordance rate (𝑪) = the frequency with which the other twin has the trait

Concordant pair: same phenotype Discordant pair: only one in the pair has the trait

Important

There has to be a difference between 𝐶𝑀𝑍 and 𝐶𝐷𝑍 for a trait to 

be under genetic influence

The larger ratio 
𝐶𝑀𝑍

𝐶𝐷𝑍
  the higher 𝐻2

If 𝐶𝑀𝑍 < 1 environmental exposures affect the trait
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GROUP WORK
T H E  H E R I TA B I L I T Y  O F  H U M A N  D I S E A S E

PART 1
1) Make 4 groups & prepare a 5-7 min 

presentation
❑ Group 1 & 3 works with section 

‘Estimating heritability’ p141-144
❑ Group 2 & 4 works with section ‘Biased 

heritability’ p144-148

PART 2 – next time (17/3)
❑ Group 1 present to group 2 and vise 

versa
❑ Group 3 present to group 4 and vise 

verse

1 3

42

1 3

42
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INHERITANCE PATTERN
O F M ULT IFACTO RI AL TR AIT S

The exact inheritance pattern depends on

❖ The number of risk genes/alleles involved

❖ The effect size distribution of the genetic risk variants

❖ The interaction among genetic variants

❖ The interaction with environmental exposures
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Each genetic variant is both 
necessary and sufficient

Mutation

Each genetic variant is neither 
necessary nor sufficient

+

Monogenic disorders Common complex disorders

Linkage analysis

(pedigree)

Association study

(unrelated population)

What does association mean
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ASSOCIATION

An association defines a relationship between two entity objects based on common attributes.

Is there an association between exposure and outcome?
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ASSOCIATION NOT CAUSATION

Matthews, R. (2000), Storks Deliver Babies (p= 0.008). 
Teaching Statistics, 22: 36-38.
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Coefficients:
             Estimate Std. Error t value Pr(>|t|)   
(Intercept) 2.250e+02  9.356e+01   2.405   0.0295 * 
Storks      2.879e-02  9.402e-03   3.063   0.0079 **
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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ASSOCIATION

Is there an association between genetic variant and disease status?

Carry variant
(A-)

Don’t carry variant
(aa)

E
x
p
o

s
u
re

Case Control

Outcome

a b

c d

Odds ratio (OR) is the ratio of 

the odds of disease among the 

exposed to the odds of disease 

among the unexposed

Odds

a/b

c/d

𝑂𝑅 =
𝑎/𝑏

𝑐/𝑑
=

𝑎 × 𝑑

𝑐 × 𝑏

OR>1

   -allele is risk allele

   -allele is seen more often among cases

OR<1

   -allele is protective

   -allele is seen more often among controls

Rare variants may have a strong effect on outcome (large OR)

Common variants have small effect on outcome (OR=1.1-1.8)
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ASSOCIATIONS
AL LE LI C V S  G E NO TY P IC

We can count alleles OR genotypes. Example; 

Association of rs6983267 on 8q24 with colorectal cancer [C/T, allele C is the risk allele]

𝑂𝑅𝑇𝑇 =
𝑜𝑑𝑑𝑠(𝑑𝑖𝑠𝑒𝑎𝑠𝑒|𝑇𝑇)

𝑜𝑑𝑑𝑠(𝑑𝑖𝑠𝑒𝑎𝑠𝑒|𝑇𝑇)
= 1

GENOTYPIC ASSOCIATION

CC CT TT

Cases 250 375 150

Controls 460 940 500

𝑂𝑅𝐶𝑇 =
𝑜𝑑𝑑𝑠(𝑑𝑖𝑠𝑒𝑎𝑠𝑒|𝐶𝑇)

𝑜𝑑𝑑𝑠(𝑑𝑖𝑠𝑒𝑎𝑠𝑒|𝑇𝑇)
=

375 × 500

940 × 150
= 1.33

𝑂𝑅𝐶𝐶 =
𝑜𝑑𝑑𝑠(𝑑𝑖𝑠𝑒𝑎𝑠𝑒|𝐶𝐶)

𝑜𝑑𝑑𝑠(𝑑𝑖𝑠𝑒𝑎𝑠𝑒|𝑇𝑇)
=

250 × 500

460 × 150
= 1.81

Note, these ORs are relative to TT 

(the lowest-risk genotype)
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ASSOCIATIONS
AL LE LI C V S  G E NO TY P IC

We can count alleles OR genotypes. Example; 

Association of rs6983267 on 8q24 with colorectal cancer [C/T, allele C is the risk allele]

C alleles = 2 * 250 CC + 375 CT = 875 
T alleles = 2 * 150 TT + 375 CT = 675 

C alleles = 2 * 460 CC + 940 CT = 1860
T alleles = 2 * 500 TT + 940 CT = 1940

Cases

Controls

𝑂𝑅𝐶 =
𝑜𝑑𝑑𝑠(𝑑𝑖𝑠𝑒𝑎𝑠𝑒|𝐶)

𝑜𝑑𝑑𝑠(𝑑𝑖𝑠𝑒𝑎𝑠𝑒|𝑇)
=

875 × 1940

1860 × 675
= 1.35

ALLELIC ASSOCIATION

C T

Cases 875 675

Controls 1860 1940
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GENETIC RISK FOR 

LUNG CANCER?

A genetic studie of lung cancer (LC, 1989 cases and 2625 

controls) found a nicotine receptor (CHRNA3/5) to be 

associated with the risk of developing lung cancer.

Does that then mean that CHRNA3/5 is a risk loci for LC?

Risk loci for nicotine addition → addicted to smoking →  

increase LC risk



28

GENOME-WIDE 

ASSOCIATION ANALYSIS 

(GWAS) – PART 1

- What is a GWAS

- LD 
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GENOME-WIDE ASSOCIATION STUDY

(GWAS)

A systematic analysis of all common genetic variants without a priori hypothesis.

The aim is to identify risk variants for complex traits.

Testing one variant at a time
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ASSOCIATION TESTING
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THE BIOMETRIC MODEL
WH Y T HIS  M OD EL ?

Consider a single locus with two alleles; 𝐴1 and 𝐴2, with the frequencies 𝑝 and 𝑞.

Under HWE, the genotype frequencies are 𝑝2, 2𝑝𝑞, and 𝑞2.

Under the biometric model, the genotypic value of 𝐴1𝐴1 is 𝑎, and – 𝑎 for 𝐴2𝐴2.

The genotype calue for 𝐴1𝐴2 is 𝑑.

In this model, every single genetic variant with non-zero effect on a phenotype 

contributes to the population mean (𝑃 = 𝐺 + 𝐸).

𝐴1𝐴1𝐴2𝐴2 𝐴1𝐴2
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THE BIOMETRIC MODEL
WH Y T HIS  M OD EL ?

The mean effect (on the phenotype) is a function of the genotype effects (– 𝑎, 𝑎, and 𝑑) 

weighted by allele frequencies:

𝑎𝑝2 + 𝑑2𝑝𝑞 + −𝑎𝑞2 = a p − q + d2pq

Polygenic traits are influenced by many genetic variants; thus, assuming 

additive and independent effects, the population mean is:

𝜇 = ෍

𝑖=1

𝑚

𝑎𝑖 𝑝𝑖 − 𝑞𝑖 + ෍

𝑖=1

𝑚

𝑑𝑖2𝑝𝑖𝑞𝑖
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HOW MANY SITES IN THE GENOME?

Should we test ALL 3,000,000,000 nucleotides within the genome?

No necessary, because of an old fried – Linkage Disequilibrium (LD)
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WHAT IS LD?

A B

a b

A B

a b

A

a

b

B

Which gamtes can 

be produced?

What are the 

frequencies of the 

alleles?

P(A), P(a)

P(B), P(b)

What are the 

frequencies of the 

haplotypes?

P(AB), P(Ab)

P(aB), P(ab)



P A G E
3 5

WHAT IS LD?

A B

a b

A

a

b

B

If there is random relationship among alleles at the two loci 

then the frequency of the haplotypes will be the product of the 

frequencies of the two alleles:

P(AB)=P(A)xP(B) 

P(Ab)=P(A)xP(b) 

P(aB)=P(a)xP(B) 

P(ab)=P(a)xP(b) 
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WHAT IS LD?

When the association between alleles at two loci is non-

random they are said to be in linkage disequilibrium

The degree of LD can be measure in several ways – the 

simples one is:
𝑫 = 𝑷𝑨𝑩 − 𝑷𝑨𝑷𝑩

If D=0, no LD, if D>0 LD

Decay with physical distance
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LD AND GENE MAPPING

SNP

A
B
C
D
E
F
G

SNP

A
B
C
D
E
F
G

Linkage equilibrium – random association Linkage disequilibrium – non-random association
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LD AND GENE MAPPING

SNP

A
B
C
D
E
F
G

SNPs B, C, D,E and F are in LD

If you have allele 1 here, I know 

what you are at the remaing sites 

in this haploblok
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HOW MANY SITES IN THE GENOME?

Should we test ALL 3,000,000,000 nucleotides within the genome?

No necessary, because of an old fried – Linkage Disequilibrium (LD)

Typically, we test 5,000,000 – 10,000,000 SNPs.
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AGENDA

08:15 – 08:30 Recap [Complex triats and genetic parameters]

08:30 – 09:00 Group presentations from last

09:00 – 09:15 Break

09:15 – 09:45 Lecture 1 [Genetic associations + GWAS part 1]

09:45 – 10:15 Exercise 1 + 2

10:15 – 10:30 Break

10:30 – 11:00 Lecture 2 [GWAS part 2]

11:00 – 11:55 Group work

11:55 – 12:00 Evaluation at Moodle



41

BREAK
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GENOME-WIDE 

ASSOCIATION ANALYSIS 

(GWAS) – PART 2

- What is a GWAS

- LD 

- GWAS by steps
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GWAS BY STEPS
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GWAS BY STEPS

1. Select trait/disease
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SELECT PHENOTYPE

Do we know anything about the phenotype already?

Is it heritable?

Do we know whether it is monogenic or polygenic?

Is it a common or rare disorder?
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GWAS BY STEPS

1. Select trait/disease

2. Extract genetic variants
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GENOTYPING

Because of LD you do not have to analyse all 3,000,000,000 variants in the 

genome.

Typically, we genotype ½ - 1 million variants

Because of LD we can impute (“guess” what variants are next to the genotyped 

variant) up til 10 million common genetic variants.
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IMPUTATION
US I NG  HA PL OT Y PE S

A T C

G C A

The true haplotypes

This individual has 

inherited a chromosome 
with alleles A-T-C from one 

parent, and G-C-A from the 

other parent

We observe only the genotypes

A/G T/C C/A

Genotype data does not 

carry information about 

the haplotypes.

We do not know whether 
A at SNP1 is coming from 
the same parent as T or C 

at SNP2

Different haplotypes

A C A

A C C

A T A

A C A

G C A

G C C

G T A

G T C

Phasing = estimate the most 

likely haplotypes
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IMPUTATION

From a sequencing study

Genotypes
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GWAS BY STEPS

1. Select trait/disease

2. Extract genetic variants

3. GWAS
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STATISTICAL ANALYSIS
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For each genetic variant [genotyping 

chip or after imputation] measure the 

degree of association between SNP and 

disease/trait

Linear regression

Allow us to account for confunding effects 

like, sex, age and ancestry.

If trait follows Gaussian distribution:

- Linear regression

- Linear Mixed Model

If trait is dichotomous:

- Linear model with non-linear 

transformation

     [logistic regression with logit(x)]

Fischers exact test

𝑂𝑅 =
𝑎 × 𝑑

𝑐 × 𝑑
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doi:10.1038/nature07331 

ANCESTRY
AF FE CT S ALL E LE  FR E QU EN CIE S

They surveyed genetic variation in a 

sample of 3,192 European individuals 

which were genotyped at 500,568 loci 

using the Affymetrix 500K single 

nucleotide polymorphism (SNP) chip. 

“Our main result holds even when we 

relax nearly all of these stringency criteria, 

we focus our analyses on genotype data 

from 197,146 loci in 1,387 individuals 

(Supplementary Table 2), for whom we 
have high confidence of individual origins.” 



CAN I  RUN A GWAS ON MY LAPTOP?

GenomeDK HPC

Aarhus University

Computerome HPC

DTU

not really…

… and specilized software designed to handle large genetic data sets

then how?
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GWAS BY STEPS

1. Select trait/disease

2. Extract genetic variants

3. GWAS

4. Summaries 10M linear regressions
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GWAS RESULTS

That was only 0.0067% of the results
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MANHATTAN PLOT For each variant, plot the –log10(P-value) as 

function of chromosomal position.

P=0.05 → -log10(0.05) = 1.3
P=0.001 → -log10(0.001) = 3
P=0.000000005 → -log10(0.000000005) = 8.3
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HYPOTHESIS TESTING

Null hypothesis (H0) is true Null hypothesis (H0) is false

Reject null hypothesis (H0) Type I error 𝛼
False positive

Correct outcome

True positive

Accecpt null hypothesis (H0) Correct outcome

True negative

Type II error 𝛽
False negative

The probability (P) of making a type I error is denoted by 𝛼; we reject the null hypothesis if the inferred P 

value is less than the significance level (𝛼=0.05). I.e., the probability of rejecting the null hypothesis when 

should be accepted.

Why multiple testing correction? If we test 500,000 SNPs, then by chance we expect 25.000 SNPs to be 
significant (if 𝛼=0.05) → i.e., 25.000 false-positive associations.

One solution is to correct for number of tests performed; Bonferroni correction; 

     Corrected P-value = 𝑃 × 𝑛𝑡𝑒𝑠𝑡𝑠 ≤ 0.05 OR 
𝛼

𝑛𝑡𝑒𝑠𝑡𝑠
=new significance threshold
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MANHATTAN PLOT For each variant, plot the –log10(P-value) as 

function of chromosomal position.

P=0.05 → -log10(0.05) = 1.3
P=0.001 → -log10(0.001) = 3
P=0.000000005 → -log10(0.000000005) = 8.3Genome-wide significance level?

-adjust for no. of independent statistical tests 

(1,000,000 independent genomic regions [LD])
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POWER IS EVERYTHING IN GWAS
the probability of detecting an effect, if there is 
a true effect present to detect

Has high heritabilitet (h2= 0.85)
The population prevalence is 1% 
Emerge in late teens 
Molecular aetiology is unknown

Schizophrenia

6000 people
0 genes

depends among otherthings on sample size

20.000 people
5 genes

50.000 people
62 genes

110.000 people
108 genes !

320.000 people
287 genes !
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GWAS BY STEPS

1. Select trait/disease

2. Extract genetic variants

3. GWAS

4. Summaries 10M linear regressions

5. Find the causal variant
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Let’s take a closer look
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The lead SNP

All the “blue” variants are in LD – which gene is associated with SCZ?

Statistical “Fine mapping” fitting multiple variants at a time [adjust of LD]
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Statistical “Fine mapping” fitting multiple variants 

at a time [adjust of LD]

𝑦 = 𝑋𝑖𝛽𝑖 + 𝑔 + 𝑒

𝑦 = 𝑋𝑖=430𝛽𝑖=430 + 𝑔 + 𝑒

𝑦 = 𝑋𝑖=430𝛽𝑖=430 + 𝑋𝑖=431𝛽𝑖=431 + 𝑔 + 𝑒
⋮
⋮

FINE MAPPING

i=430

Condition on index variant
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GWAS BY STEPS

1. Select trait/disease

2. Extract genetic variants

3. GWAS

4. Summaries 10M linear regressions

5. Find the causal variant

6. Meta analysis
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META ANALYSIS

Meta-analysis is a set of methods that allows the 

quantitative combination of data from multiple studies

Meta-analysis of GWA datasets can increase the power 

to detect association signals by increasing sample size 

and by examining more variants throughout the genome 

than each dataset alone

Assume two independent estimates ො𝑥1 = 1.0 and ො𝑥2 =

2.0, and that the precision of the first estimate is twice 

that of the second (precision = 1/SE2)

ො𝑥𝑚𝑒𝑡𝑎 =
2 ො𝑥1+ ො𝑥2

2+1
=

2+2

3
= 1.33

doi:10.1136/annrheumdis-2012-203114
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GWAS BY STEPS

1. Select trait/disease

2. Extract genetic variants

3. GWAS

4. Summaries 10M linear regressions

5. Find the causal variant

7. Spurious associations

6. Meta analysis
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Cases Controls

SPURIOUS ASSOCIATIONS
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SPURIOUS ASSOCIATIONS

Cases

p=0.50

Controls

p=0.01 SUSHI gene

Are there any problems?
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SPURIOUS ASSOCIATIONS

HLA class I diversity is illustrated by the prevalence of 

nine HLA-B molecules
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GWAS BY STEPS

1. Select trait/disease

2. Extract genetic variants

3. GWAS

4. Summaries 10M linear regressions

5. Find the causal variant

7. Spurious associations

6. Meta analysis

8. Post hoc analyses
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GWAS POST HOC ANALYSES
G E N E  S E T  E N R IC H M E N T

Looking for variants with small effects

Gene enrichment analyses we examine 

whether a group of SNPs (within a biological 

entity) display a more extreme association 

signal than by chance.

In a GWAS we go through all SNPs one by one.



HOW COMMON ARE GWASes?
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HOW COMMON ARE GWASes?
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What about rare genetic 

variants for common 

diseases?
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RARE VARIANT 

TESTING

130

140

150

160

170

180

190

200

SNP-1

Genotype
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)

AA Aa aa

P val =  0.61

130
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160

170

180

190

200

SNP-2

Genotype
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e

ig
h

t 
(c

m
)

AA Aa aa

P val = <2e-16 

If variation at the locus is rare 

association testing is not possible 

(no aa or few Aa individuals exists)

Test the “burden” of all rare variants within a gene.

Often variants are group by functional consequence 

(missense, pLOF etc)
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GENOME-WIDE 

ASSOCIATION ANALYSIS 

(GWAS)

- What is a GWAS

- LD 

- GWAS by steps
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GROUP WORK
G WA S  A N D  F U T U R E  D I R E C T I O N

1) Go into your ‘complex traits’ group [45 min]
❑ Discuss what did you learn from the GWAS 

you selected
❑ Read pages 3-10 in the ICDA white-paper
❑ Discuss how the reccomdations could be 

important for your trait
2) Plenum discuss [10 min]
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YOUR OPPINION MATTERS
MO O DLE  E VAL UAT IO N
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