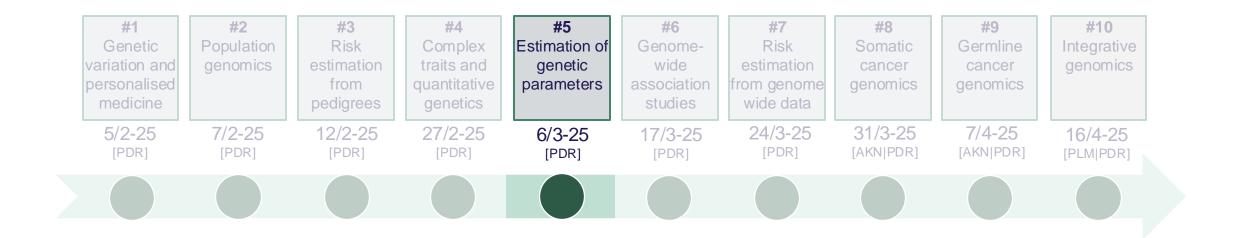

ESTIMATION OF GENETIC PARAMETERS #5


PALLE DUUN ROHDE

palledr@hst.aau.dk

LETS GET STARTED

LINKAGE AND GENETIC TESTING

Today we will talk about

- Quantitative genetic parameters
 - Variance components
 - > Heritability
 - Genetic correlation

AGENDA

- **08:15 09:00** Lecture 1 [*Quantitative genetic parameters*]
- **09:00 09:15** Break
- 09:15 10:00 Exercise
- 10:00 10:15 Break
- 10:15 11:00 Exercise continued
- 11:00 11:15 Break
- **11:00 11:55** Group work [selfpaced]
- 11:55 12:00 Evaluation at Moodle

AGENDA

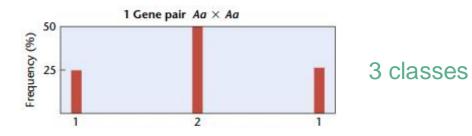
08:15 – 09:00 Lecture 1 [*Quantitative genetic parameters*]

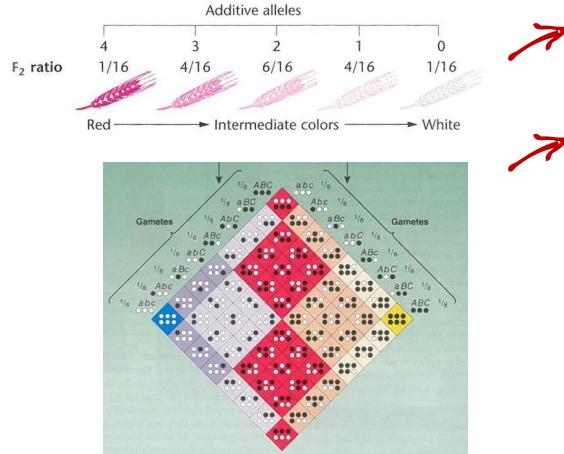
- **09:00 09:15** Break
- 09:15 10:00 Exercise
- 10:00 10:15 Break
- **10:15 11:00** Exercise continued
- 11:00 11:15 Break
- **11:00 11:55** Group work [selfpaced]
- 11:55 12:00 Evaluation at Moodle

QUANTITATIVE TRAITS

Continous variation

Categorical variation


AALBORG


UNIVERSITY

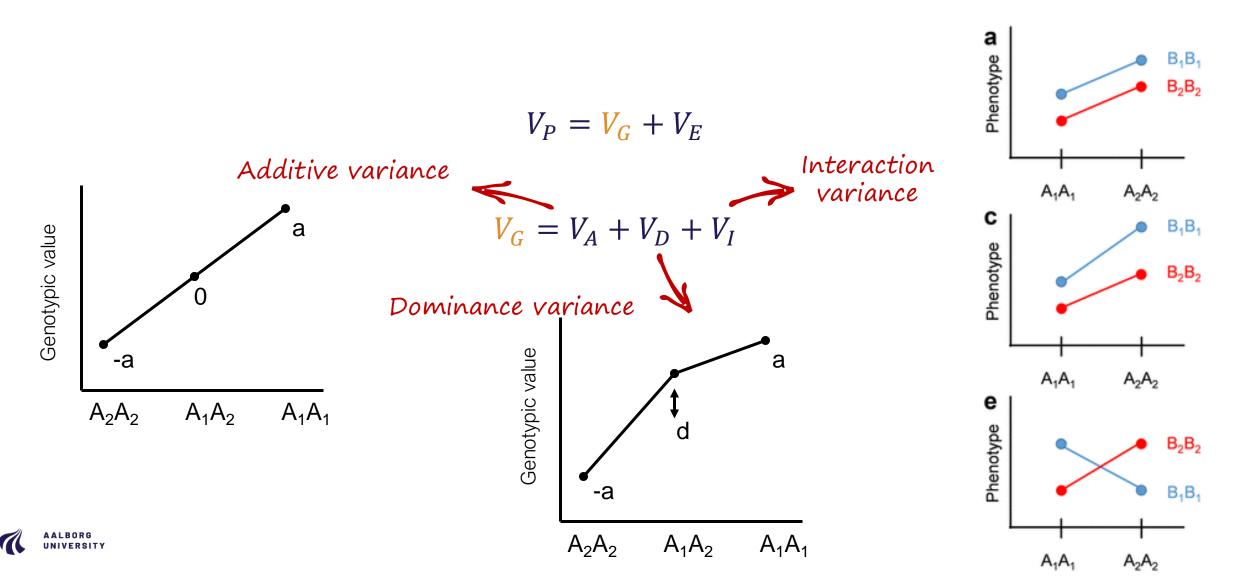
People without condition People with condition Threshold zone Frequency Clinical diabetes

Threshold traits

COMPLEX TRAITS

PHENOTYPIC VARIANCE




GENETIC PARAMETERS

- Separate V_G and V_E
- Heritability
- Genetic correlation

PARTITION OF GENETIC VARIANCE

HERITABILITY

The concept heritability is an important concept as it describes the proportion of the *phenotypic variance that is due to genetic variation*.

BROAD-SENSE HERITABILITY

Broad-sense heritability (H^2) describes the proportion of the phenotypic variance that is explained by genetic difference between individuals in the population.

$$V_P = V_G + V_E$$

$$H^2 = \frac{V_G}{V_P} = \frac{V_G}{V_G + V_E}$$

H^2 can take values between 0 and 1:

 $H^2 = 0 \rightarrow$ all variation is due to environmental variation

 $H^2 = 1 \rightarrow$ all variation is due to genetic variation

NARROW-SENSE HERITABILITY

 $V_P = V_G + V_E$ $V_P = V_A + V_D + V_I + V_E$

Narrow-sense heritabilitet (h^2) is the proportion of the phenotypic variance that is explained by additive genetic variance

$$h^2 = \frac{V_A}{V_P}$$

 $H^2 \mathbf{VS} h^2$

Broad-sense heritability (H²) is an estimate for the proportion of phenotypic variation that is due to genetic variation

h² is always smaller than H²

Narrow-sense heritability (h²) Is an estimate of the proportion of phenotypic variation that is caused by additive genetic variation – the part of the genetic variation that is directly transmitted from generation to generation

Additive genetic variance: hereditary | one allele from mom, one from dad Dominance variance: is established after gamete formation Interaction variance: is established after gamete formation

USING TWINS TO ESTIMATE H^2

Monozygotic twins (MZ): Difference in V_P is V_E .

 Image: December 2 with the sector of the

Dizygotic twins (DZ): Difference in V_P is $V_G + V_E$.

USING TWINS TO ESTIMATE H^2 QUANTITATIVE COMPLEX TRAITS

Because DZ share 50% of the genetic material $H^2 = 2(r_{MZ} - r_{DZ})$

MZ

= r_{MZ}

 $x = r_{DZ}$

All phenotypic variation between MZ is environment, whereas all phenotypic variation between DZ is both

Thus, the difference is genetic variation

USING TWINS TO ESTIMATE H^2 DICHOTOMOUS COMPLEX TRAITS

Concordance rate (*C***)** = the frequency with which the other twin has the trait

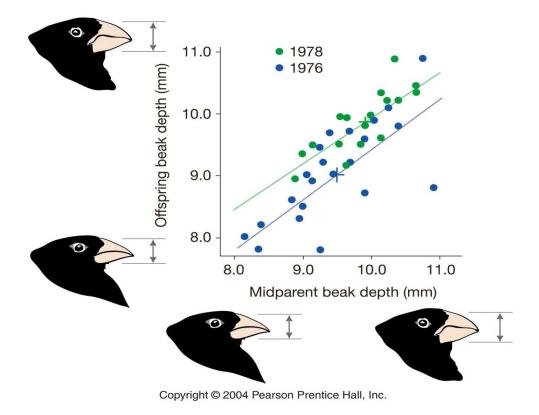
Discordant pair: only one in the pair has the trait

<u>Important</u>

$$H^2 = \frac{C_{MZ} - C_{DZ}}{1 - C_{DZ}}$$

There must be a difference between C_{MZ} and C_{DZ} for a trait to be under genetic influence

The larger ratio $\frac{C_{MZ}}{C_{DZ}}$ the higher H^2


If $C_{MZ} < 1$ environmental exposures affect the trait

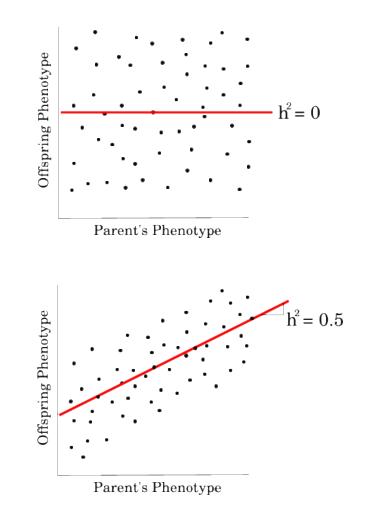

USING TWINS TO ESTIMATE H^2

TABLE 22.1	Heritability estimates from twin studies of quantitative traits	TABLE 22.2	MZ and DZ twin confor complex discrete		
Trait	Heritability*		Concord MZ twins	ance* DZ twins	H ²
Height	0.68 - 0.90	Trait	and the second second second second second		
Body mass index	0.64 - 0.84	Type 1 diabetes	0.43	0.074	0.38
Birth weight	0.64 – 0.84	Type 2 diabetes	0.34	0.16	0.21
Brain frontal lobe volum	e 0.90 – 0.95	Schizophrenia	0.41	0.053	
Exercise participation	0.48 - 0.71	Autism spectrum	0.94	0.47	
Dietary patterns	0.41 - 0.48	Alzheimer's disease	0.32	0.087	
		Parkinson's disease	0.16	0.11	0.06
		Multiple sclerosis	0.25	0.054	
		Crohn's disease	0.38	0.02	
		Colorectal cancer	0.11	0.05	
		Breast cancer	0.13	0.09	
		Prostate cancer	0.18	0.03	

ESTIMATE h^2

Parent-offspring regression $h^2 = \text{slope} = \hat{\beta} = COV_{XY}/\sigma_X^2$

GENERAL APPROACH TO PARTITION VARIANCES

• Use a linear mixed model

y = Xb + Za + e

- $y = n \times 1$ vector of observations; n = number of records
- $b = p \times 1$ vector of fixed effects; p = number of levels for fixed effects
- $a = q \times 1$ vector of random individual effects, q = number of levels for random effects
- $e = n \times 1$ vector of random residuals
- X = design matrix of order $n \times p$ which relates records to fixed effects
- Z =design matrix of order $n \times q$ which relates records to random effects

Variance components can be estimated with REML (residual maximum likelihood)

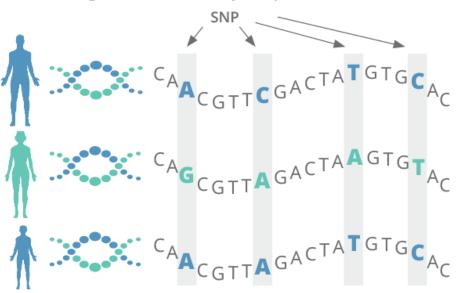
RELATIONSHIP MATRICES

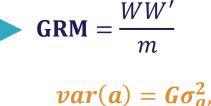
• $var(a) = A\sigma_a^2$, A =relationship matrix

A tabular pedigree for six individuals

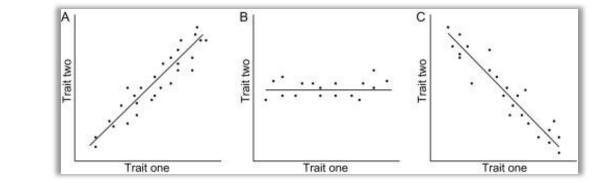
Individual	Dad	Mom
3	1	2
4	1	NA
5	4	3
6	5	2

if both parents are known; $a_{i,j}=0.5(a_{jd}+a_{jm}) \& a_{i,i}=1+0.5(a_{dm})$ if one parent is known; $a_{i,j}=0.5(a_{jd})$


	1	2	3	4	5	6
1	1	0	0.5	0.5	0.5	0.25
2	0	1	0.5	0	0.25	0.625
3	0.5	0.5	1	0.25	0.625	0.563
4	0.5	0	0.25	1	0.625	0.313
5	0.5	0.25	0.625	0.625	1.125	0.688
6	0.25	0.625	0.563	3.13	0.688	1.125


Single Nucleotide Polymorphism (SNPs)

RELATIONSHIP MATRICES


• If we don't have a pedigree but genetics...

Individual	SNP ₁	SNP ₂	
1	0	2	
2	2	1	
3	1	1	
4	2	2	
5	0	0	
6	0	0	

GENETIC CORRELATION

The genetic correlation refers to the genetic link between two traits, which can help elucidate the shared biological pathways and/or causal relationships between them.

 $x = g_x + e_x$

$$y = g_y + e_y,$$

the genetic correlation (ρ_g) of the traits is:

$$\rho_g = \frac{\sigma_{g_x, g_y}}{\sqrt{\sigma_{g_x}^2 \sigma_{g_y}^2}}$$

If traits are standardized to variance =1

$$\rho_g = \frac{h_{xy}}{\sqrt{h_x^2 h_y^2}}$$

AALBORG 10.1038/s41576-019-0137-z

Pleiotropy is present when a genetic locus affects more than one trait

a Horizontal pleiotropy

QUANTITATIVE GENETICS

- Unidentified genotypes but measured trait variability.
- Phenotypic vs Genotypic values
- Gene action
- Heritability

BREAK

AGENDA

- **08:15 09:00** Lecture 1 [*Quantitative genetic parameters*]
- **09:00 09:15** Break
- 09:15 10:00 Exercise
- **10:00 10:15** Break
- **10:15 11:00** Exercise continued
- **11:00 11:15** Break
- **11:00 11:55** Group work [*selfpaced*]
- **11:55 12:00** Evaluation at Moodle

BREAK

AGENDA

- **08:15 09:00** Lecture 1 [*Quantitative genetic parameters*]
- **09:00 09:15** Break
- **09:15 10:00** Exercise
- **10:00 10:15** Break
- **10:15 11:00** Exercise continued
- 11:00 11:15 Break
- **11:00 11:55** Group work [*selfpaced*]
- **11:55 12:00** Evaluation at Moodle

GROUP WORK THE HERITABILITY OF HUMAN DISEASE

PART 1

- 1) Make 4 groups & prepare a 5-7 min presentation
 - Group 1 & 3 works with section
 'Estimating heritability' p141-144
 Group 2 & 4 works with section 'Biased heritability' p144-148

PART 2 – *next time* (17/3)

- Group 1 present to group 2 and vise versa
- Group 3 present to group 4 and vise verse

MOODLE EVALUATION REMEMBER

List the two Start most important things you	What did you	What did you 🔓 🕀 🗙 find easy?	Improvements for next session?	
learned today	+	+		
			Ŧ	
Ŧ				

