

LETS GET STARTED

POPULATION GENOMICS

Today we will talk about

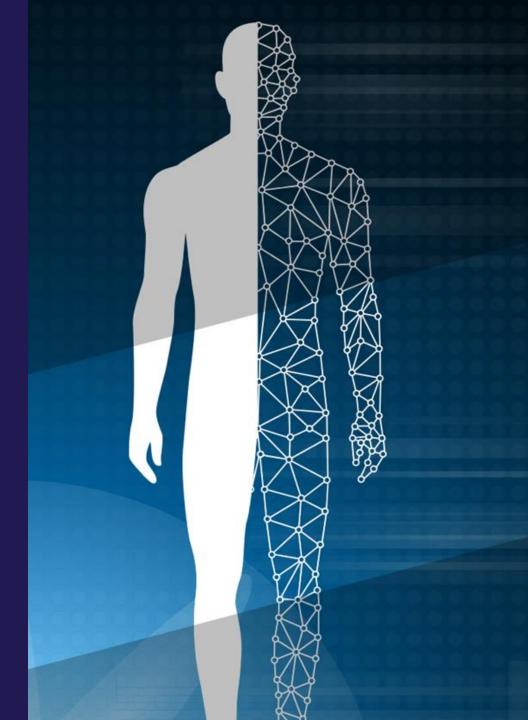
- Allele and genotype frequencies
- Hardy-Weinberg proportions
- Forces affecting genetic variation

OUTLINE

- 08:15 08:30 Recap
- **08:30 08:50** Lecture 1 [Introduction to population genomics and frequencies]
- **08:50 09:30** Break + Exercises Part 1 [E3, E4, E6]
- 09:30 09:50 Lecture 2 [Hardy-Weinberg]
- **09:50 10:30** Break + Exercises Part 2 [E8, E12]
- **10:30 10:50** Lecture 3 [Modulation of genetic variation]
- **10:50 11:45** Break + Exercises Part 3 [E13, E15]
- **11:45 12:00** Reflection

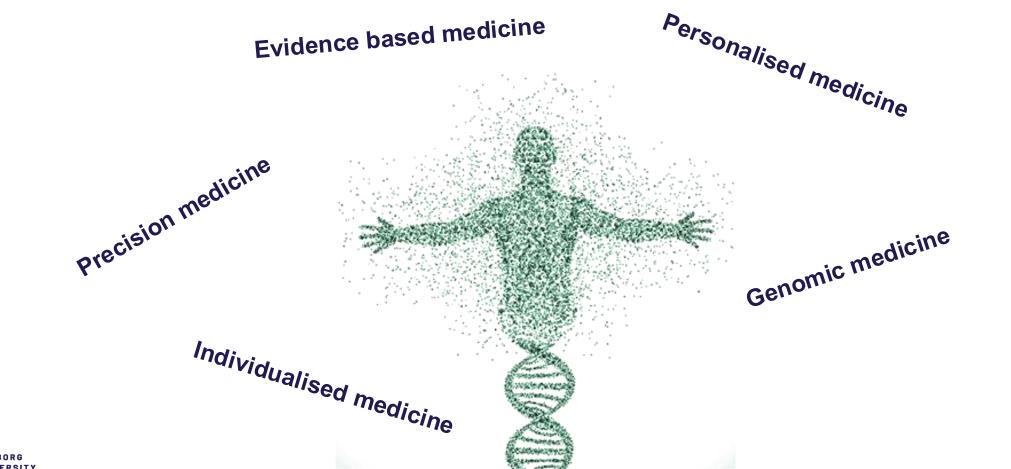
The remaining exercises are also curriculum; thus, you must do them on your own.

OUTLINE

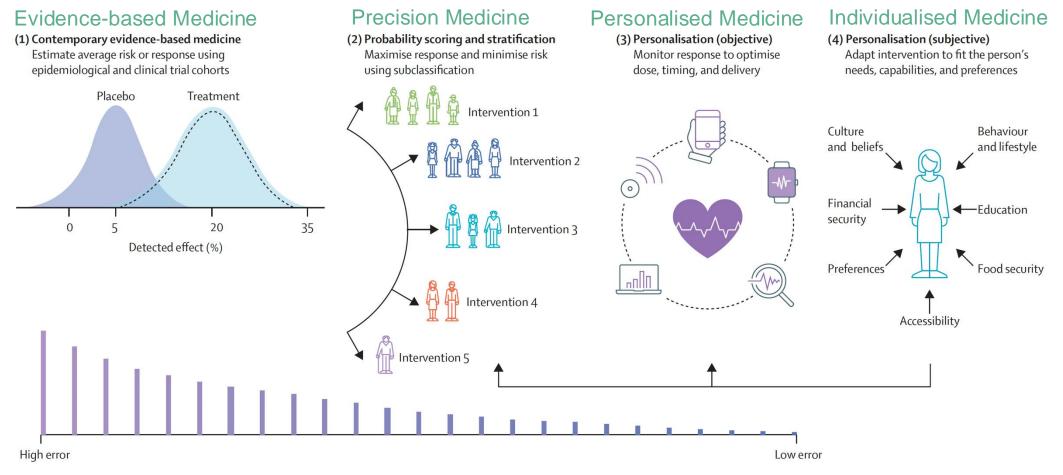

08:15 - 08:30 Recap

- **08:30 08:50** Lecture 1 [Introduction to population genomics and frequencies]
- **08:50 09:30** Break + Exercises Part 1 [E3, E4, E6]
- 09:30 09:50 Lecture 2 [Hardy-Weinberg]
- **09:50 10:30** Break + Exercises Part 2 [E8, E12]
- **10:30 10:50** Lecture 3 [*Modulation of genetic variation*]
- **10:50 11:45** Break + Exercises Part 3 [E13, E15]
- **11:45 12:00** Reflection

SHORT RECAP FROM LAST


Personalised medicine

Genetic variation



WHAT IS PERSONALISED MEDICINE?

IMPLEMENTATION OF PRECISION MEDICINE

EPPOS [evidence-based precision personalised objective subjective]


AALBORG UNIVERSITY The Novo Nordisk Foundation, Precision medicine for cardiometabolic disease 2022 Franks et al, 2023, Lancet Diabetes Endocrinol; 11: 822–35

WHY PRECISION MEDICINE?

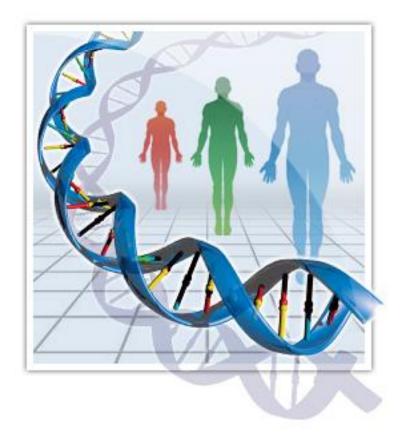
Because people are different

- \rightarrow respond differently to medication
- \rightarrow different side effects

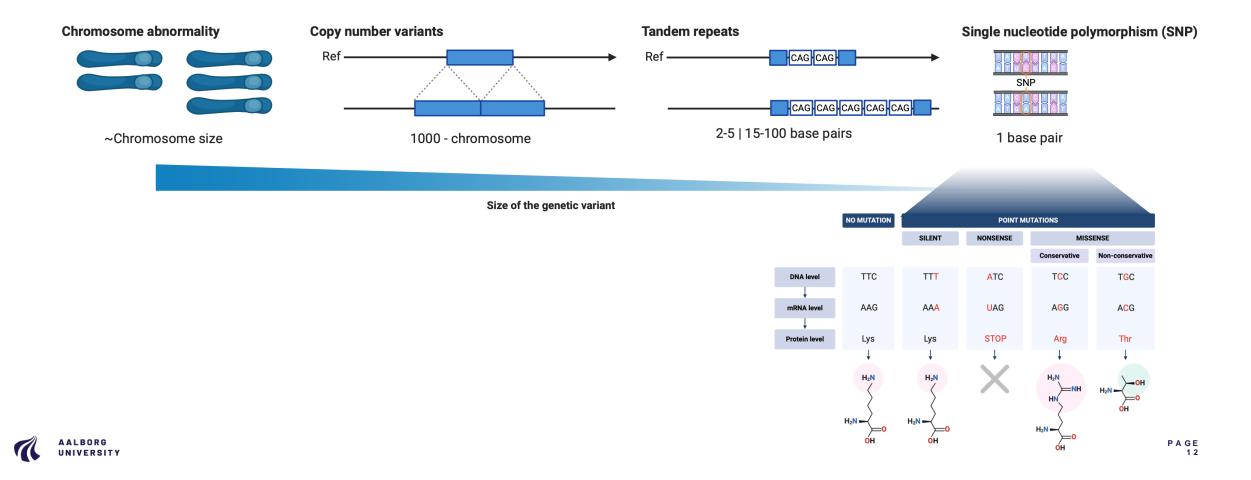
Diagnostics, prognosis, treatment

FOCUS ON GENOMICS IN PRECISION MEDICINE

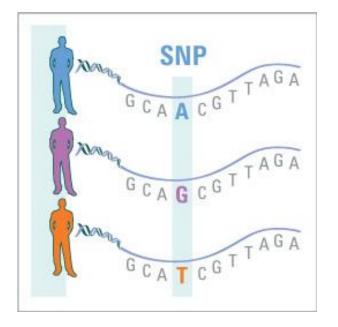
- 1) DNA is the *Blueprint* identical from cradle-to-grave
- 2) Driven by technological development
- 3) One way causation [sickle cell disease]
- 4) A genetic test early in life have the potential to guide people
- 5) Other 'omics also captures "environmental exposures"

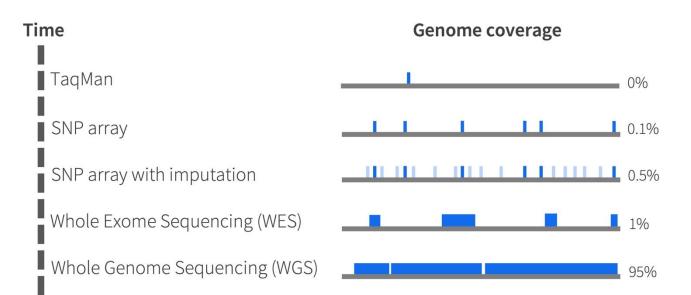

GENETIC DIVERISTY

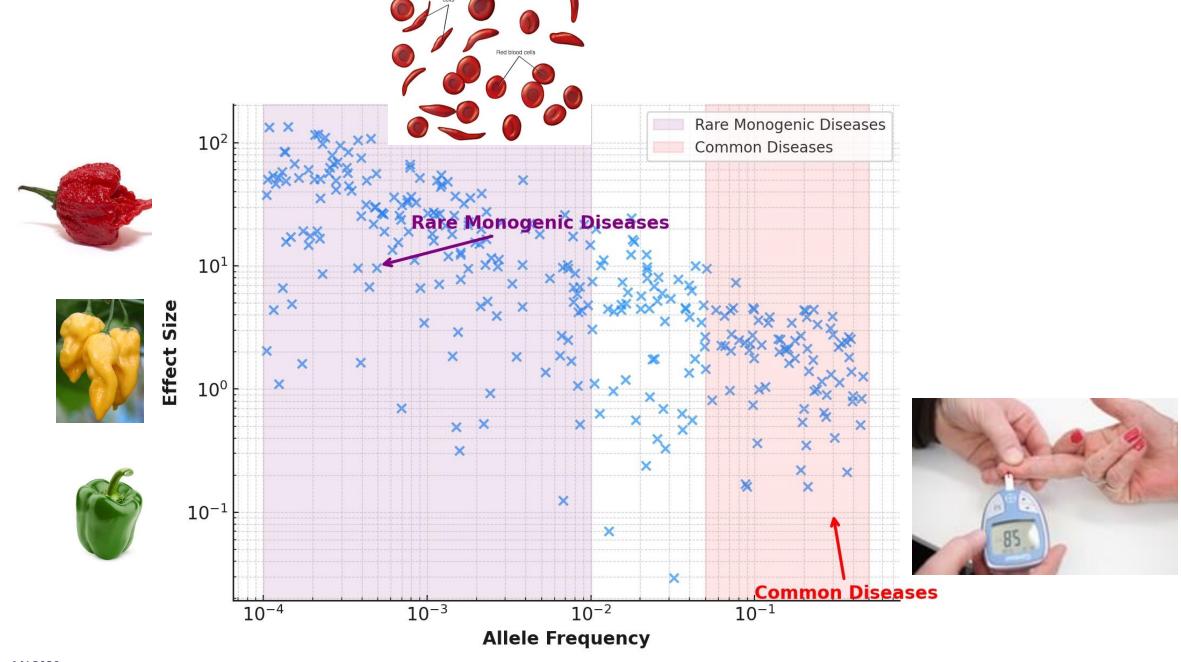
Human evolution is driven by several different (evolutionary) factors


- Genetic mutations
- ✤ Migration
- Natural selection
- ✤ Genetic drift

The product is genetic diversity within a population.


Understanding the genetic diversity and how it has arisen is a necessary precursor to understand the genetics of complex traits.


GENETIC VARIATION AT DIFFERENT RESOLUTION



GENETIC VARIATION SINGLE NUCLEOTIDE POLYMORPHISMS (SNPs)

Variation in the human genome ~3 billion base pairs ~90 million variants

OUTLINE

08:15 – 08:30 Recap

- **08:30 08:50** Lecture 1 [Introduction to population genomics and frequencies]
- **08:50 09:30** Break + Exercises Part 1 [E3, E4, E6]
- 09:30 09:50 Lecture 2 [Hardy-Weinberg]
- **09:50 10:30** Break + Exercises Part 2 [E8, E12]
- **10:30 10:50** Lecture 3 [*Modulation of genetic variation*]
- **10:50 11:45** Break + Exercises Part 3 [E13, E15]
- **11:45 12:00** Reflection

POPULATION GENOMICS

The study of the distribution of hereditary variation across time and space in species and populations [Bugge, F. 2008]

WHY IS POPULATION GENETICS IMPORTANT?

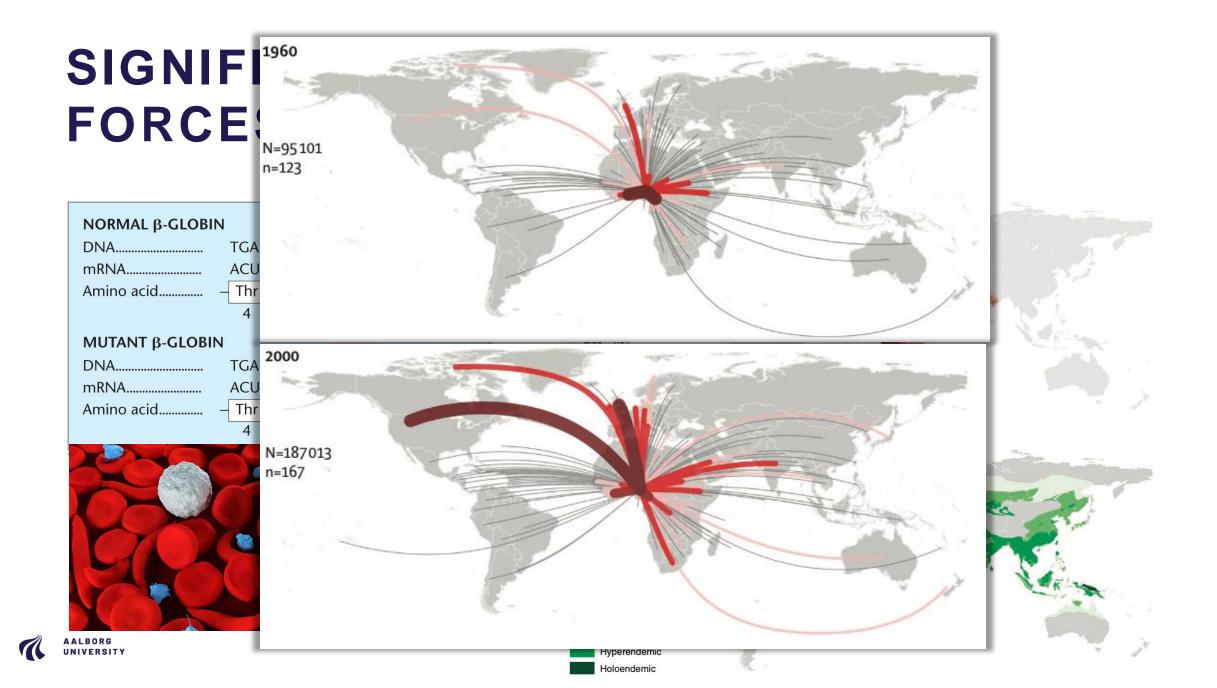
Population genomics tackles questions about genetic diversity 0.08% of nucleotide base pair in human DNA vary among individuals Humans and orangutans are ~97% similar

Why this little genetic diversity?

- Selection favour functionally different DNA alleles in different circumstances
- DNA variation is tolerated when the alleles of a gene are functionally equivalent

The aim of population genomics is to model the dynamics of evolutionary change within and between populations.

THE FOUR FORCES


Mutation Copying errors during DNA replication, which introduce new alleles into the population

Natural selection differential transmission of alleles into the next generation due to the consequences of functional differences on an individual's survival and reproductive success

Genetic drift differential transmission of alleles into the next generation as a result of random sampling, and has the greatest potential impact in small populations

Gene flow spreads alleles from one population into another via migration, making them more genetically similar to each other, and countering genetic differentiation by drift

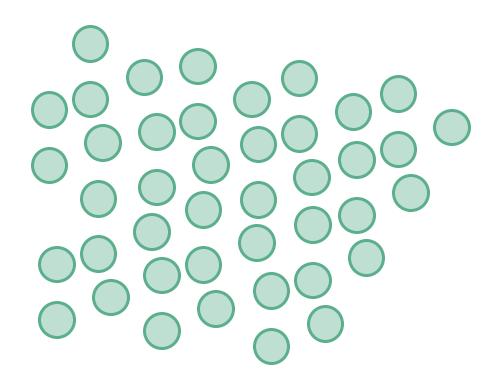
WHY IS POPULATION GENETICS IMPORTANT?

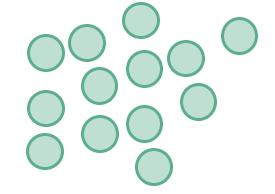
Population genetics tackles questions about genetic diversity 0.08% of nucleotide base pair in human DNA vary among individuals

Why this little genetic diversity?

- Selection favour functionally different DNA alleles in different circumstances
- DNA variation is tolerated when the alleles of a gene are functionally equivalent

The aim of population genetics is to model the dynamics of evolutionary change within and between populations.

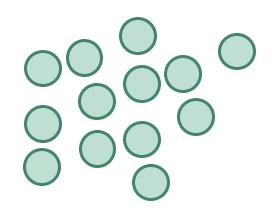

GENETIC VARIATION IN A SINGLE LOCUS


GENETIC VARIATION

IN A SINGLE LOCUS

A diploid (2*n* alleles) population

Random sampling



A random sample of individuals of whom we know the genotype of in a single locus

GENETIC VARIATION

IN A SINGLE LOCUS

Co-dominant (i.e., we can observe both alleles in heterozygote individuals).

The population is polymorph in one autosomal locus with the alleles A and a, and three genotypes, AA, Aa and aa.

The frequencies of the alleles are denoted **p** and **q**, and the frequency of the genotypes are P_{AA} , P_{Aa} and P_{aa} .

A random sample of individuals of whom we know the genotype of in a single locus **Note!** There is a difference between $\hat{\mathbf{p}}$ and \mathbf{p} . The hat () indicates that it is an estimate ($\hat{\mathbf{p}}$) over the true parameter (\mathbf{p}). For simplicity we ignore $\hat{}$.

FREQUENCIES

Genotype	AA	Aa	aa	Σ
Count	n _{AA}	n _{Aa}	n _{aa}	Ν
Genotype frequency	n _{AA} /N	n _{Aa} /N	n _{aa} /N	1

Allele frequency of A: $p = (2 \times n_{AA} + n_{Aa})/2 \times N$ Allele frequency of a: $q = (2 \times n_{aa} + n_{Aa})/2 \times N$ We are counting the alleles

Check!
$$p + q = 1$$
 All alleles are counted

EXAMPLE

MN blod group system is controled by one locus with two co-dominante alleles L^{M} og L^{N} .

Genotype	MM	MN	NN	Σ
Count	64	120	16	200
Genotype frequency	64/200 = 0.32	120/200 = 0.6	16/200 = 0.08	1

Allele frequency of M:
$$p = (2 \times n_{MM} + n_{MN})/2 \times N = \frac{(2 \times 64 + 120)}{(2 \times 200)} = 0.62$$

Allele frequency of N:
$$q = (2 \times n_{NN} + n_{Mn})/2 \times N = \frac{(2 \times 16 + 120)}{(2 \times 200)} = 0.38$$

<u>Check</u> p + q = 0.62 + 0.38 = 1

YOUR TURN

In a random sample of 100 individuals, we observe whether they can roll their tongue or not.

RR

Rr

rr

9

ey can R = can roll tongue r = cannot roll tongue

What is the frequency of the R allele?

Genotype

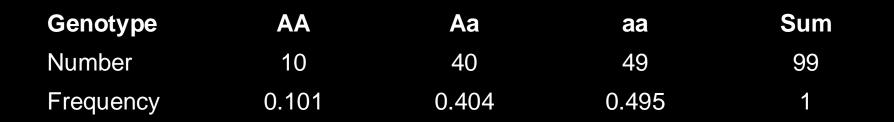
YOUR TURN

In a random sample of 100 individuals, we observe whether they can roll their tongue or not.

R = can roll tonguer = cannot roll tongue

Genotype	RR	Rr	rr
Count	49	42	9

THE ACCURACY OF FREQUENCIES


The accuracy of allele frequencies can be determined from their variances - which are equal since p = 1 - q

Variance of p: Var(p) =
$$\frac{p(1-q)}{2N} + \frac{P_{AA}-p^2}{2N}$$

Variance of p: Var(p) = $\frac{p(1-q)}{2N}$, if there are Hardy-Weinberg proportion (see later)

EXAMPLE

Allele frequency of A: $p = \frac{2 \times 10+40}{2 \times 99} = 0.303$ Allele frequency of a: $q = \frac{2 \times 49+40}{2 \times 99} = 0.697$

The variance of the allele frequency A: $Var(p) = \frac{0.303(1-0.303)}{2\times99} + \frac{0.101-0.303^2}{2\times99} = 0.00111$ The standard deviation of the allele frequency A: $sd(p) = \sqrt{0.00111} = 0.033$

Assuming Gaussian distribution the 95% confidence interval is: estimate $\pm 1.96 \times sd$ $\rightarrow 0.303 [0.238-0.368]$

OUTLINE

- 08:15 08:30 Recap 08:30 – 08:50 Lecture 1 [*Introduction to population genomics and frequencies*]
- 08:50 09:30 Break + Exercises Part 1 [E3, E4, E6]
- 09:30 09:50 Lecture 2 [Hardy-Weinberg]
- **09:50 10:30** Break + Exercises Part 2 [E8, E12]
- **10:30 10:50** Lecture 3 [*Modulation of genetic variation*]
- 10:50 11:45 Break + Exercises Part 3 [E13. E
- **11:45 12:00** Reflection

OUTLINE

- 08:15 08:30 Recap
- **08:30 08:50** Lecture 1 [Introduction to population genomics and frequencies]
- **08:50 09:30** Break + Exercises Part 1 [E3, E4, E6]
- 09:30 09:50 Lecture 2 [Hardy-Weinberg]
- **09:50 10:30** Break + Exercises Part 2 [E8, E12]
- **10:30 10:50** Lecture 3 [*Modulation of genetic variation*]
- **10:50 11:45** Break + Exercises Part 3 [E13, E15]
- **11:45 12:00** Reflection

HARDY-WEINBERG LAW

So far, we have computed allele frequencies by counting genotypes

Genotype frequencies \rightarrow Allele frequencies

Under certain conditions, we can compute genotype frequencies in the next generation

Allele frequencies \rightarrow Genotype frequencies

However, that requires some assumptions.

THE NEUTRAL POPULATION

- Random mating
- No selection
- No genetic drift (infinite population size)
- No migration
- No mutation

Hardy-Weinberg principal describes the relationship allele- and genotype frequencies in the neutral population

HARDY-WEINBERG LAW

Known population parameters

AA	Aa	aa
P _{AA}	P _{Aa}	P _{aa}

6

What is the frequency in the next generation?

		Males					
		AA	Aa	aa			
es	AA	P_{AA}^2	P _{AA} P _{Aa}	$P_{AA}P_{aa}$			
Females	Aa	$P_{Aa}P_{AA}$	P_{Aa}^2	$P_{Aa}P_{aa}$			
Ъ Г	aa	$P_{aa}P_{AA}$	P _{aa} P _{Aa}	P_{aa}^2			

HARDY-WEINBERG EQUILIBRIUM

		Geno	Genotypes of offspring]		Α	
Parental	Frequency	AA	Aa	aa		Α	AA	A
combinations						Α	AA	A
ΑΑ Χ ΑΑ	P_{AA}^2	P_{AA}^2						
AA x Aa	$2 \times P_{AA}P_{Aa}$	P _{AA} P _{Aa}	P _{AA} P _{Aa}		Y			
AA x aa	$2 \times P_{AA}P_{aa}$		$2 \times P_{AA}P_{aa}$					
Aa x Aa	P_{Aa}^2	$1/4 P_{Aa}^2$	$1/2 P_{Aa}^2$	$1/4 P_{Aa}^2$			Α	6
Aa x aa	$2 \times P_{Aa}P_{aa}$		P _{Aa} P _{aa}	P _{Aa} P _{aa}		Α	AA	A
Aa x aa	P_{aa}^2			P_{aa}^2		а	Aa	a

HARDY-WEINBERG EQUILIBRIUM

		Genotypes of offspring			$ = \sum AA = P_{AA}^2 + P_{AA}P_{Aa} + 1/4 P_{Aa}^2 $
Parental combinations	Frequency	AA	Aa	aa	$= (P_{AA} + 1/2P_{Aa})^2 = p^2$
AA x AA	P_{AA}^2	P_{AA}^2			$\sum_{aa} = P_{aa}^{2} + P_{aa}P_{Aa} + 1/4 P_{Aa}^{2}$
AA x Aa	$2 \times P_{AA}P_{Aa}$	P _{AA} P _{Aa}	P _{AA} P _{Aa}		
AA x aa	$2 \times P_{AA}P_{aa}$		$2 \times P_{AA}P_{aa}$		$= (P_{aa} + 1/2P_{Aa})^2 = q^2$
Aa x Aa	P_{Aa}^2	$1/4 P_{Aa}^2$	$1/2 P_{Aa}^2$	$1/4 P_{Aa}^2$	$\sum Aa = P_{AA}P_{Aa} + 2P_{AA}P_{aa} + 1/2 P_{Aa}^2 + P_{Aa}P_{aa}$
Aa x aa	$2 \times P_{Aa}P_{aa}$		P _{Aa} P _{aa}	P _{Aa} P _{aa}	
Aa x aa	P _{aa} ²			P _{aa} ²	$= 2(P_{AA} + 1/2P_{Aa})(P_{aa} + 1/2P_{Aa})$ = 2pq

$$p = \frac{2N_{AA} + N_{Aa}}{2N} = \frac{N_{AA} + 1/2N_{Aa}}{N} = P_{AA} + 1/2P_{Aa} \qquad q = \frac{2N_{aa} + N_{Aa}}{2N} = \frac{N_{aa} + 1/2N_{Aa}}{N} = P_{aa} + 1/2P_{Aa}$$

HARDY-WEINBERG EQUILIBRIUM

After one generation under HW assumptions the genotype frequencies will be in equilibrium:			
Genotype	AA	Aa	aa
Frequency	p ²	2pq	q ²

Allele frequencies do not change!

		Males		
		A (p)	a (q)	
les	A (p)	p ²	pq	
Females	a (q)	pq	q ²	

TESTING H-W PROPORTIONS

GenotypeAAAaaaObserved
$$N_{AA}$$
 N_{Aa} N_{aa} Expected $E_{AA} = p^2 N$ $E_{Aa} = 2pqN$ $E_{aa} = q^2 N$

$$\chi^{2} = \frac{(N_{AA} - E_{AA})^{2}}{E_{AA}} + \frac{(N_{Aa} - E_{Aa})^{2}}{E_{Aa}} + \frac{(N_{aa} - E_{aa})^{2}}{E_{aa}}$$

General ≥ 2 alleles
$$\chi^{2} = \sum_{i=1}^{m} \frac{(Obs - Exp)^{2}}{Exp}$$

P-value is obtained from χ^2 -distribution and degrees of freedom (*df*):

$$df = \frac{n(n-1)}{2}$$
, *n*= number of alleles

EXAMPLE HIV-1

NIVERSITY

HIV-1 is the virus giving AIDS.
Being homozygote for the *CCR5* mutation
∆32 protects against HIV-1 virus, whereas
heterozygotes are susceptible, and the disease progress slowly.

Genotype	1/1	1 /∆ 32	∆ 32/ ∆ 32	Σ
Observed	79	20	1	100
Expected	p ² N	2pqN	q ² N	Ν

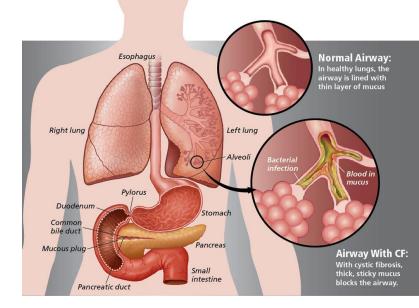
Allele frequency of 1: $p = \frac{2 \times 79 + 20}{2 \times 100} = 0.89$ Allele frequency of $\Delta 32$: $q = \frac{2 \times 1 + 20}{2 \times 100} = 0.11$

Expected $\begin{array}{cccc} 0.89^2 \times 100 & 2 \times 0.89 \times 0.11 \times 100 & 0.11^2 \times 100 \\ = 79.21 & = 19.58 & = 1.21 \end{array} \quad 100$ $\chi^2 = \frac{(79 - 79.21)^2}{79.21} + \frac{(20 - 19.58)^2}{19.58} + \frac{(1 - 1.21)^2}{1.21} = 0.046 \quad \checkmark \quad \begin{array}{c} \text{This population} \\ \text{is in HW} \\ \text{proportions}_{\text{Age}} \end{array}$

EXAMPLE HIV-1

R

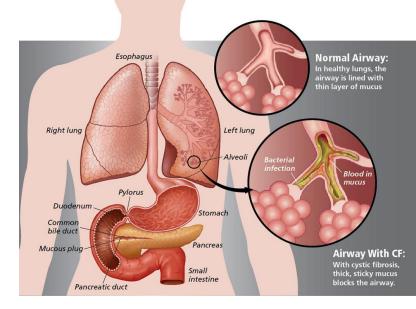
```
> NAA <- 79
> NAa <- 20
> Naa <- 1
> N <- NAA+NAa+Naa
>
> p <- (2*NAA+NAa)/(2*N)
> q <- (2*Naa+NAa)/(2*N)
>
> EAA <- p^2*N
> EAa <- 2*p*q*N
> Eaa <- q^2*N
>
> X <- (NAA-EAA)^2/EAA + (NAa-EAa)^2/EAa + (Naa-Eaa)^2/Eaa</p>
> pchisq(q=X, df=1, lower.tail=FALSE)
[1] 0.8301536
>
```


YOUR TURN

Cystic fibrosis (CF) is a hereditary autosomal recessive disease, that, among other things, affects the lungs causing chronic/frequent lung infections.

In Europe, the prevalence of children born with cystic fibrosis (CF) is approximately 1/2500.

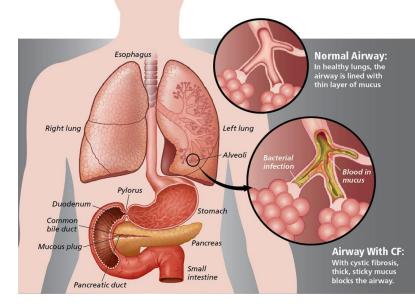
What is the frequency of the CF-allele?


Assume Hardy-Weinberg proportions.

YOUR TURN

Cystic fibrosis (CF) is a hereditary autosomal recessive disease, that, among other things, affects the lungs causing chronic/frequent lung infections.

In Europe, the prevalence of children born with cystic fibrosis (CF) is approximately 1/2500.

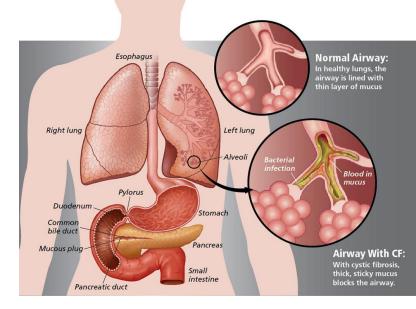


YOUR TURN AGAIN

Cystic fibrosis (CF) is a hereditary autosomal recessive disease, that, among other things, affects the lungs causing chronic/frequent lung infections.

In Europe, the prevalence of children born with cystic fibrosis (CF) is approximately 1/2500.

What is the frequency of healthy CF-carriers?



YOUR TURN AGAIN

Cystic fibrosis (CF) is a hereditary autosomal recessive disease, that, among other things, affects the lungs causing chronic/frequent lung infections.

In Europe, the prevalence of children born with cystic fibrosis (CF) is approximately 1/2500.

HARDY-WEINBERG PROPORTIONS >2 ALLES

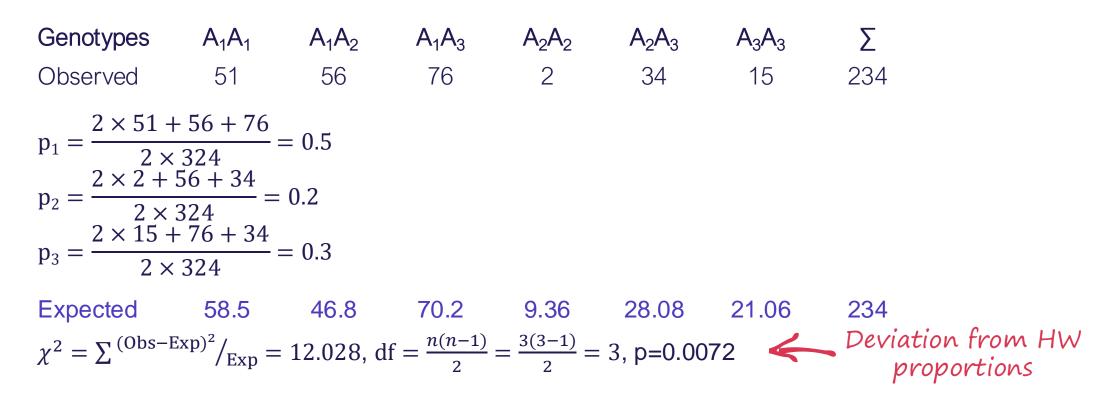
			Males	
		A ₁ (p ₁)	A ₂ (p ₂)	A ₃ (p ₃)
S	A ₁ (p ₁)	$A_1A_1 (p_1^2)$	$A_1A_2 (p_1p_2)$	$A_1A_3 (p_1p_3)$
emale	A ₂ (p ₂)	$A_2A_1 (p_2p_1)$	$A_2A_2 (p_2^2)$	A_2A_3 (p ₂ p ₃)
Fel	A ₃ (p ₃)	A ₃ A ₁ (p ₃ p ₁)	A ₃ A ₂ (p ₃ p ₂)	A ₃ A ₃ (p ₃ ²)

HARDY-WEINBERG PROPORTIONS >2 ALLES

Genotype frequencies after random mating:

 $A_1A_1: p_1^2$ $A_1A_2: 2p_1p_2$ $A_2A_2: p_2^2$ $A_1A_3: 2p_1p_3$ $A_3A_3: p_3^2$ $A_2A_3: 2p_2p_3$

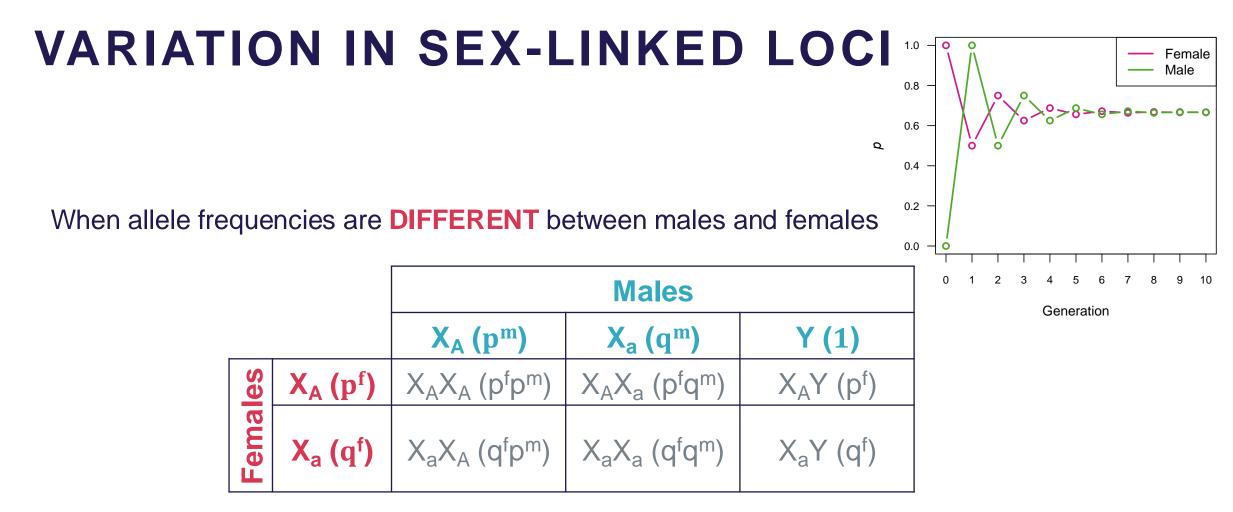
Allele frequencies after random mating:


 $p_1(p_1+p_2+p_3)=p_1(p_1+(1-p_1-p_3)+p_3)$

 $p_1 = p_1^2 + 0.5 \times 2p_1p_2 + 0.5 \times 2p_1p_3 = p_1(p_1 + p_2 + p_3) = p_1$ $p_2 = p_2^2 + 0.5 \times 2p_1p_2 + 0.5 \times 2p_2p_3 = p_1(p_1 + p_2 + p_3) = p_2$ $p_3 = p_3^2 + 0.5 \times 2p_1p_3 + 0.5 \times 2p_2p_3 = p_1(p_1 + p_2 + p_3) = p_3$

HARDY-WEINBERG PROPORTIONS >2 ALLES

One locus with tre co-dominante alleles; A₁, A₂ og A₃


VARIATION IN SEX-LINKED LOCI

When allele frequencies are **THE SAME** between males and females

			Males	
		Х_А (р)	X _a (q)	Y (1)
ales	Х_А (р)	X _A X _A (p ²)	X _A X _a (pq)	X _A Y (p)
Femal	X_a (q)	X _a X _A (qp)	X _a X _a (q ²)	X _a Y (q)

... then, the genotype frequency for males is the allele frequency.

At equilibrium: $p=(p^m+p^f)/3$

OUTLINE

- 08:15 08:30 Recap
- **08:30 08:50** Lecture 1 [Introduction to population genomics and frequencies]
- **08:50 09:30** Break + Exercises Part 1 [E3, E4, E6]
- 09:30 09:50 Lecture 2 [Hardy-Weinberg]
- 09:50 10:30 Break + Exercises Part 2 [E8, E12]
- **10:30 10:50** Lecture 3 [*Modulation of genetic variation*]
- 10:50 11:45 Break + Exercises Part 3 [E13. E
- **11:45 12:00** Reflection

OUTLINE

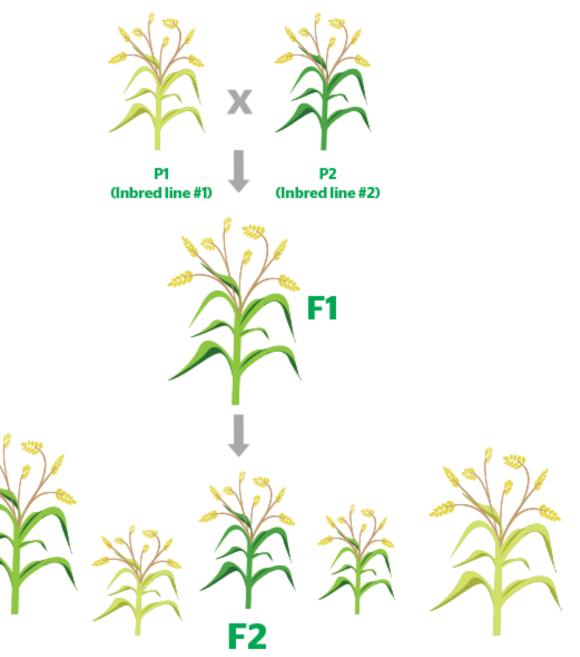
- 08:15 08:30 Recap
- **08:30 08:50** Lecture 1 [Introduction to population genomics and frequencies]
- **08:50 09:30** Break + Exercises Part 1 [E3, E4, E6]
- 09:30 09:50 Lecture 2 [Hardy-Weinberg]
- 09:50 10:30 Break + Exercises Part 2 [E8, E12]
- **10:30 10:50** Lecture 3 [Modulation of genetic variation]
- **10:50 11:45** Break + Exercises Part 3 [E13, E15]
- 11:45 12:00 Reflection

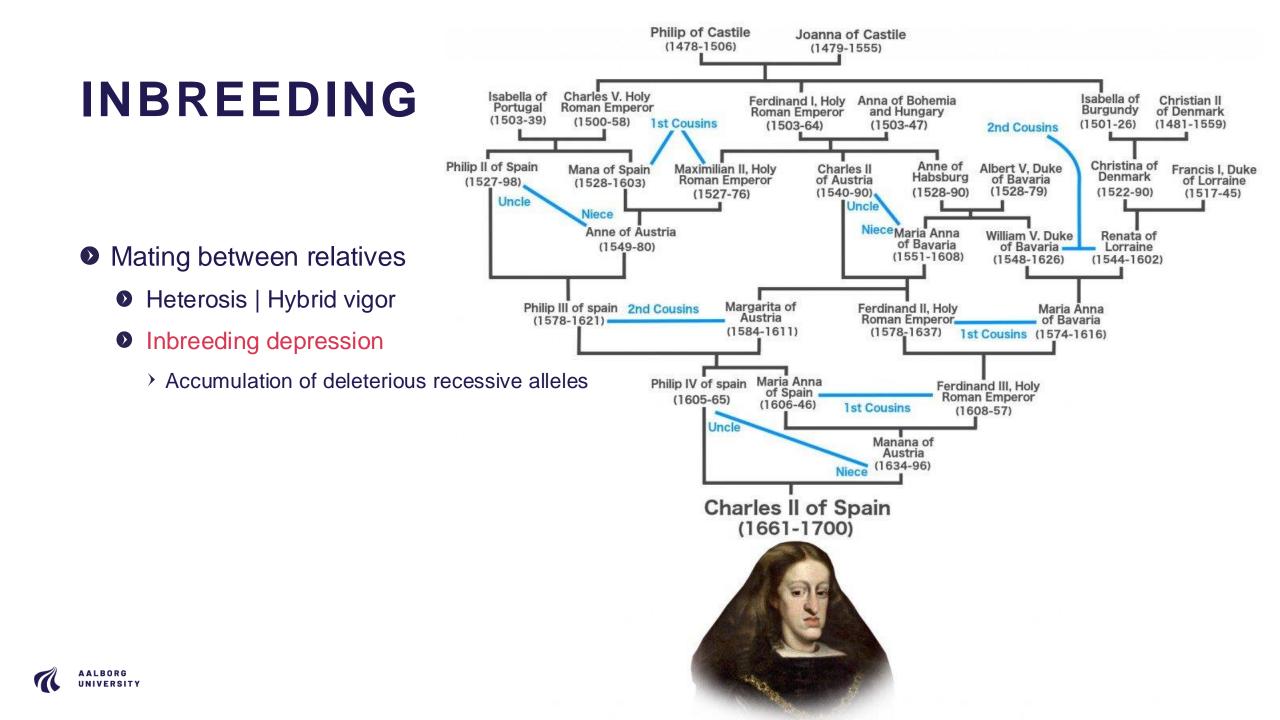
The **constancy of allele frequencies** from generation to generation only holds under the **assumptions of HW-law**.

- Random mating
- No selection
- No genetic drift (infinite population size)
- No migration
- No mutation

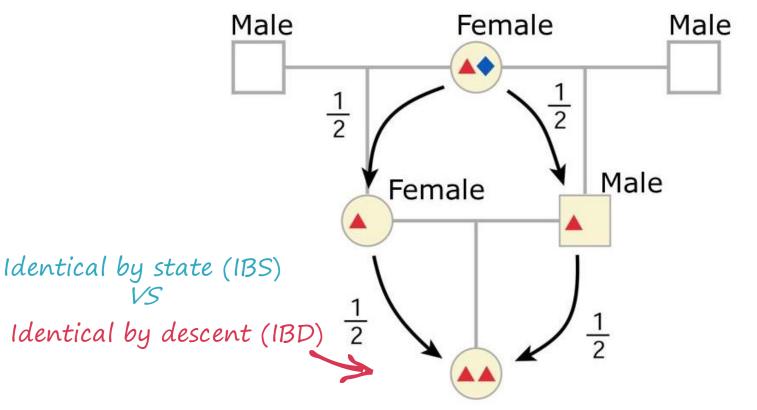
Does the neutral population exists **?**

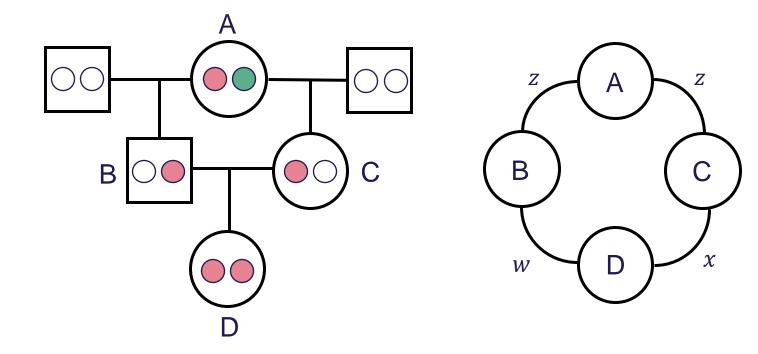
• Random mating


- No selection
- No genetic drift (infinite population size)
- No migration
- No mutation


Assortitative matingIsolation by distanceInbreeding

INBREEDING


- Mating between relatives
 - Heterosis | Hybrid vigor

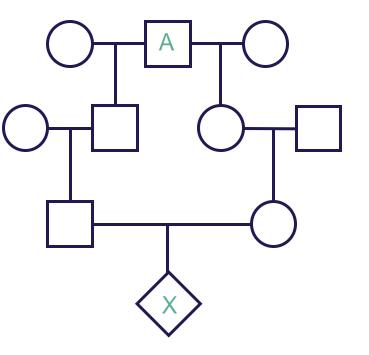

THE INBREEDING COEFFICIENT

The inbreeding coefficient (F) is the probability that two alleles in an individual trace back to the same copy in a common ancestor.

THE INBREEDING COEFFICIENT

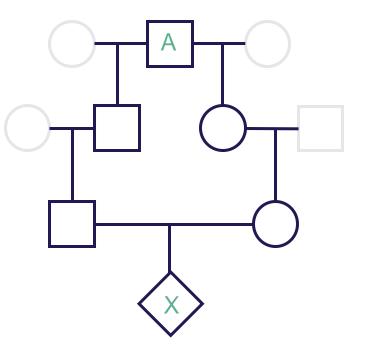
Follow the transmission of alleles.

$$F_D = \left(\frac{1}{2}\right)^n \left(1 + F_A\right)$$


where n is the number of individuals in the loop without the individual we are computed F for.

$$F_D = \left(\frac{1}{2}\right)^3 \left(1 + F_A\right)$$

YOUR TURN


What is the inbreeding coefficient for individual X assuming individual A is not inbred ($F_A = 0$)?

YOUR TURN

What is the inbreeding coefficient for individual X assuming individual A is not inbred ($F_A = 0$)?

$$F_X = \left(\frac{1}{2}\right)^5 (1+0) = \left(\frac{1}{2}\right)^5 = 0.031$$

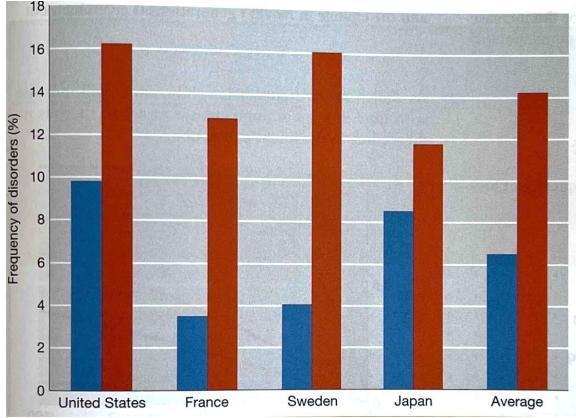
WHEN THERE ARE MULTIPLE ANCESTORS

Follow the transmission of alleles over multiple loops.

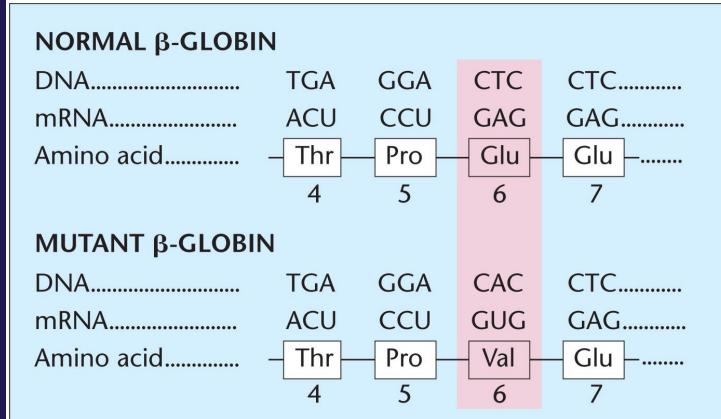
$$F_X = \sum_{loops} \left(\frac{1}{2}\right)^n \left(1 + F_A\right)$$

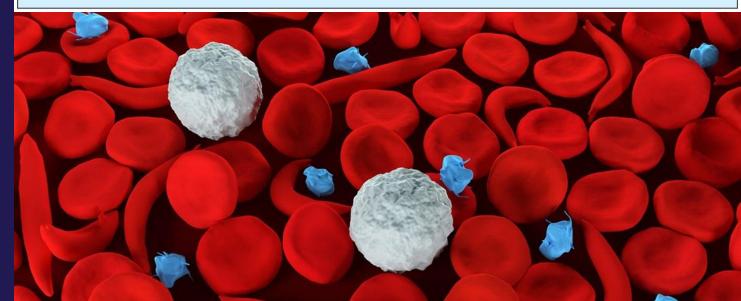
INBREEDING CHANGES GENOTYPE FREQUENCIES

If the population is in HW proportions

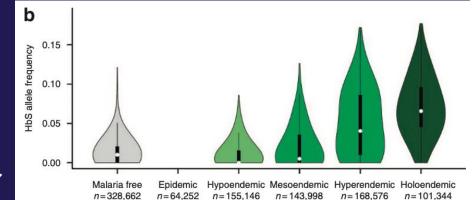

Genotype	AA	Aa	aa
Frequency	p ²	2pq	q^2

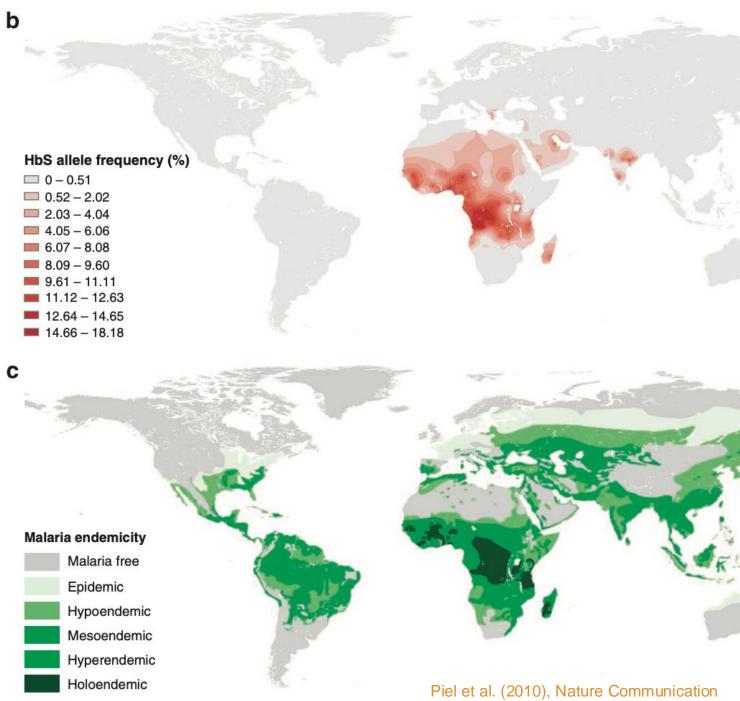
If there is inbreeding


Genotype	AA	Aa	aa
Frequency	p²+pqF	2pq -2pqF	q²+pqF


Results in excess in homozygotes

- Random mating
- No selection
- No genetic drift (infinite population size)
- No migration
- **No mutation**

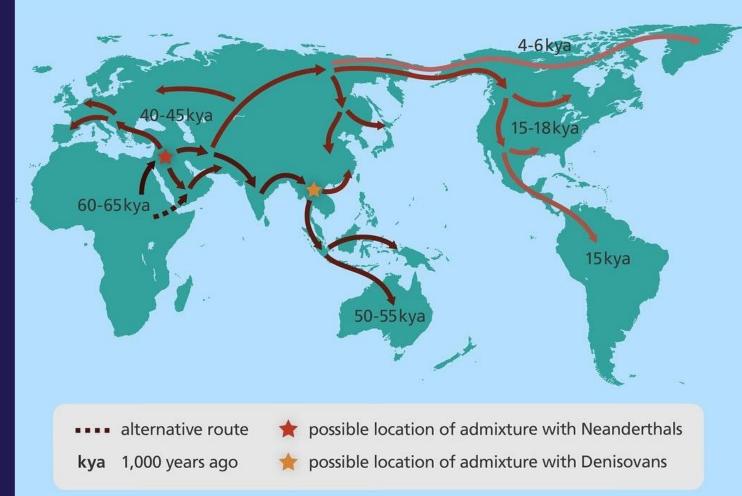




- Random mating
- **No selection**
- No genetic drift (infinite population size)
- No migration
- No mutation

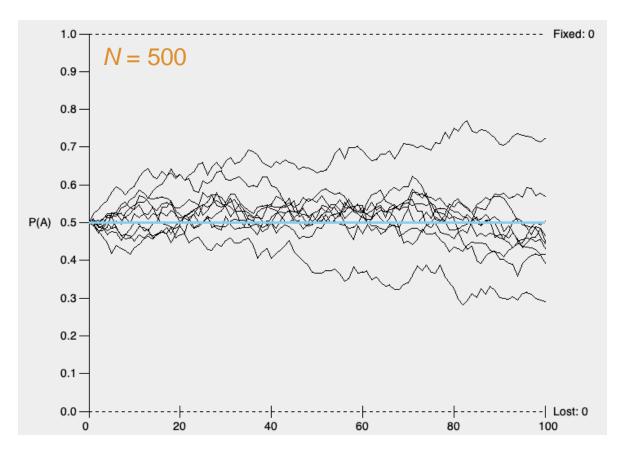
A

MUTATION AND SELECTION $a^+ \xrightarrow{\mu} a$


Number wildtype alleles in a population of 2*N* is 2*Np*, which with the raten μ mutates to harmfull allele. In the next generation the proportion of new harmfull alleles are: $\Delta q_{\mu} = 2Np\mu$

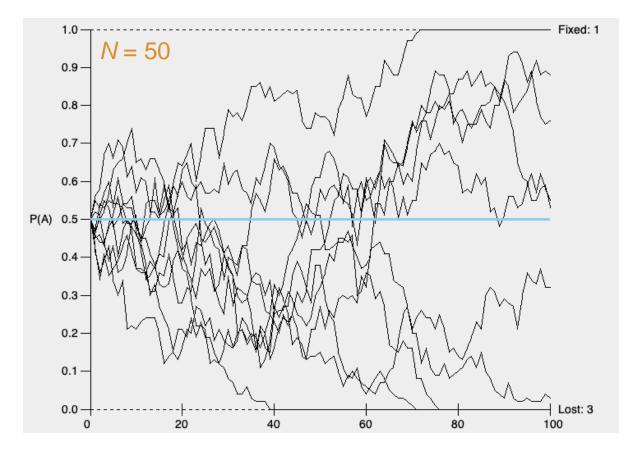
		Genotype	a^+a^+	a+a	aa
Recessive harmfull	$\Delta q_{\mu} = 2Nsq^2$	Fitness	1	1	1-s
	$q = \sqrt{\frac{\mu}{s}}$				
Dominant harmfull	$\Delta q_{\mu} = Ns2pq + 2Nsq^2$	Genotype	a^+a^+	a+a	aa
	$q = \frac{\mu}{s}$	Fitness	1	1-s	1-s

- Random mating
- No selection
- No genetic drift (infinite population size)
- No migration
- No mutation


 $q_1 = mq_m + (1-m)q_1$

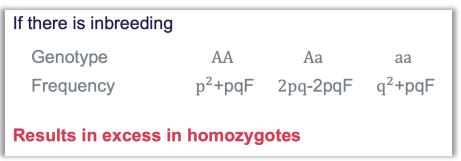
AALBORG UNIVERSITY

- Random mating
- No selection
- No genetic drift (infinite population size)
- No migration
- No mutation


Genetic drift is changes in allele frequencies between generations due to sampling error

- Random mating
- No selection
- No genetic drift (infinite population size)
- No migration
- No mutation

Genetic drift is changes in allele frequencies between generations due to sampling error


GENETIC DRIFT AND INBREEDING

Genetic drift entails loci in a sub-population becomes fixed, thus, the degree of homozygosity increases (thus, *F* increase).

The probability of selecting two gametes carrying the same allele is 1/(2N).

The degree of inbreeding increase with time

$$F_t = 1 - (1 - \frac{1}{2N})^t$$

The rate of loss of heterozygosity (*H*) per generation

$$H_t = (1 - \frac{1}{2N})^t H_0$$
, the rate depend on N

MODULATION OF FREQUENCIES

Mutation	introduces new alleles diversity within populations
Migration	introduces new alleles diversity within populations diversity between populations
Genetic drift	loss of alleles diversity within populations diversity between populations
Selection	removes harmfull alles diversity within populations diversity between populations
Non-random mating	do not change alleles, but change genotype frequencies

OUTLINE

- 08:15 08:30 Recap
- **08:30 08:50** Lecture 1 [Introduction to population genomics and frequencies]
- **08:50 09:30** Break + Exercises Part 1 [E3, E4, E6]
- 09:30 09:50 Lecture 2 [Hardy-Weinberg]
- **09:50 10:30** Break + Exercises Part 2 [E8, E12]
- **10:30 10:50** Lecture 3 [*Modulation of genetic variation*]
- 10:50 11:45 Break + Exercises Part 3 [E13, E15]
- **11:45 12:00** Reflection

OUTLINE

- 08:15 08:30 Recap
- **08:30 08:50** Lecture 1 [Introduction to population genomics and frequencies]
- **08:50 09:30** Break + Exercises Part 1 [E3, E4, E6]
- 09:30 09:50 Lecture 2 [Hardy-Weinberg]
- **09:50 10:30** Break + Exercises Part 2 [E8, E12]
- **10:30 10:50** Lecture 3 [Modulation of genetic variation]
- **10:50 11:45** Break + Exercises Part 3 [E13, E15]
- 11:45 12:00 Reflection

REFLECT TOGETHER 2 AND 2

- What will you remember from today? What did you find difficult?
What do you need to follow-up on?