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POPULATION GENOMICS

Today we will talk about
© Allele and genotype frequencies
© Hardy-Weinberg proportions

© Forces affecting genetic variation
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OUTLINE

08:15-08:30 Recap

08:30 - 08:50 Lecture 1 [Introduction to population genomics and frequencies]
08:50 - 09:30 Break + Exercises Part 1 [es, 4, E6)

09:30 - 09:50 Lecture 2 [Hardy-Weinberg]

_ are also curriculum; thus,
10:50 - 11:45  Break + Exercises Part 3 [e13 E15]
your own.

09:50 — 10:30 Break + Exercises Part 2 [es, e12]
10:30 - 10:50 Lecture 3 [Modulation of genetic variation] @ The remaining exercises

you must do them on
11:45-12:00  Reflection O
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OUTLINE

08:15-08:30 Recap
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SHORT RECAP
FROM LAST

+» Personalised medicine

+» Genetic variation
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WHAT IS PERSONALISED MEDICINE?

Evidence based medicine Perso
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IMPLEMENTATION OF PRECISION MEDICINE

EPPOS [evidence-based precision personalised objective subjective]

Evidence-based Medicine Precision Medicine Personalised Medicine Individualised Medicine
(1) Contemporary evidence-based medicine (2) Probability scoring and stratification (3) Personalisation (objective) (4) Personalisation (subjective)
Estimate average risk or response using Maximise response and minimise risk Monitor response to optimise Adapt intervention to fit the person’s
epidemiological and clinical trial cohorts Using subclassification dose, timing, and delivery needs, capabilities, and preferences
Placebo Treatment ) =
I \3 @ Intervention 1
Culture Behaviour
% @ @ @ and beliefs and lifestyle
Intervention 2 4
@%
| T T = : ;:3:?3' <—Education
0 5 20 35 g @ Intervention 3 g
Detected effect (%) !
: Preferences Food security
nﬂﬂ”
@ @ Intervention 4
Accessibility
| @ Intervention 5 T T |
High error Low error
((‘ AALBORG The Novo Nordisk Foundation, Precision medicine for cardiometabolic disease 2022

Franks et al, 2023, Lancet Diabetes Endocrinol; 11: 822-35



WHY PRECISION MEDICINE?

Because people are different $

- different disease risk \v r’\

—> respond differently to medication

- different side effects

[N

Diagnostics, prognosis, treatment



FOCUS ON GENOMICS IN
PRECISION MEDICINE

1)
2)
3)

4)

S)

DNA is the Blueprint — identical from cradle-to-grave
Driven by technological development
One way causation [sickie cell disease]

A genetic test early in life have the potential to guide
people

Other ‘omics also captures “environmental exposures”




GENETIC DIVERISTY

Human evolution is driven by several different (evolutionary) factors
% Genetic mutations
% Migration
* Natural selection

«» Genetic drift

The product is genetic diversity within a population.

Understanding the genetic diversity and how it has arisen is a

necessary precursor to understand the genetics of complex traits.

( AALBORG PAGE
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GENETIC VARIATION AT
DIFFERENT RESOLUTION

Chromosome abnormality Copy number variants Tandem repeats Single nucleotide polymorphism (SNP)
G Gl -~ — > Ref TORHRTRE
~Chromosome size 1000 - chromosome 2-5]15-100 base pairs 1 base pair

Size of the genetic variant
POINT MUTATIONS

SILENT NONSENSE MISSENSE

Conservative Non-conservative

DNA level TTC TTT ATC TCC TGC
'
mRNA level AAG AAA UAG AGG ACG
'
Protein level Lys Lys STOP Arg Thr
! | } | !

H:N H:N OH
>=NH H.N
HN 0
OH
H:N H.N
0 0 HzN
((‘ AALBORG OH OH
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GENETIC VARIATION

SINGLE NUCLEOTIDE POLYMORPHISMS (SNPs)

nn,  SNP
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Variation in the human genome

~3 billion base pairs
~90 million variants

Time

|
| TagMan

I
J SNP array
I SNP array with imputation

Whole Exome Sequencing (WES)

: Whole Genome Sequencing (WGS)
v

Genome coverage
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X X ‘ N ‘ 0 . Rare Monogenic Diseases
10° F X x ):(x Common Diseases
[ X
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Allele Frequency
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OUTLINE

08:30 - 08:50 Lecture 1 [Introduction to population genomics and frequencies]
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POPULATION
GENOMICS

The study of the distribution of
hereditary variation across time and

space in species and populations
[Bugge, F. 2008]
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WHY IS POPULATION GENETICS
IMPORTANT?

Population genomics tackles questions about genetic diversity
0.08% of nucleotide base pair in human DNA vary among individuals
Humans and orangutans are ~97% similar

Why this little genetic diversity?
Selection favour functionally different DNA alleles in different circumstances
DNA variation is tolerated when the alleles of a gene are functionally equivalent

The aim of population genomics is to model the dynamics of evolutionary change within
and between populations.



THE FOUR FORCES

Mutation Copying errors during DNA replication, which introduce new alleles into the
population

Natural selection differential transmission of alleles into the next generation due to the
consequences of functional differences on an individual’s survival and reproductive success

Genetic drift differential transmission of alleles into the next generation as a result of
random sampling, and has the greatest potential impact in small populations

Gene flow spreads alleles from one population into another via migration, making them
more genetically similar to each other, and countering genetic differentiation by drift

( AALBORG PAGE
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SIGNIF[*™
FORCE

N=95101
n=123

NORMAL B-GLOBIN

\ 2000

N=187013
n=167

( AALBORG
UNIVERSITY B Hyperendemic —
- Holoendemic



WHY IS POPULATION GENETICS
IMPORTANT?

The aim of population genetics is to model the dynamics of evolutionary change within
and between populations.
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GENETIC »
VARIATION IN A [RSEE
SINGLE LOCUS Sl
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GENETIC VARIATION

IN A SINGLE LOCUS

O
09 0

O @, O O
OOOO OO OOO Random samplin OO OOO
@ 09 00 plirg O
OOO%OO

e O

O

A random sample of individuals
of whom we know the genotype
of in a single locus
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GENETIC VARIATION

IN A SINGLE LOCUS

A random sample of individuals
of whom we know the genotype
of in a single locus

Co-dominant (i.e., we can observe both alleles in
heterozygote individuals).

The population is polymorph in one autosomal locus with the
alleles A and a, and three genotypes, AA, Aa and aa.

The frequencies of the alleles are denoted p and ¢, and the
frequency of the genotypes are P,,, Pa, and P,

Note! There is a difference between p and p. The hat (A)
Indicates that it Is an estimate (p) over the true parameter (p).

For simplicity we ignore



FREQUENCIES

Genotype AA Aa aa )
Count Nap Na, Ny, N
Genotype frequency nys/N nu,/N n,,/N 1

Allele frequency of A:p = (2 X naa +npy)/2 XN
<— We are counting the alleles
Allele frequency of a: q = (2 X ng, + nay)/2 X N

Check! p+q=1%< All alleles are counted




MN blod group system is controled

E XA |\/| P |_ E by one locus with two co-dominante

alleles LM og LN,

Genotype MM MN NN )

Count 64 120 16 200

Genotype frequency 6:462;)20 12=O{)2£ 0 16620%0 1
Allele frequency of M: p = (2 X nym + hyn) /2 X N = (2()(26;22102)0) = 0.62
Allele frequency of N: q = (2 X nyy + nyp) /2 X N = (2()(21;;0102)0) = 0.38

Checkp+q=062+038=1



«

YOUR TURN

In a random sample of 100 individuals, we observe whether they can R = can roll tongue
roll their tongue or not. r = cannot roll tongue

Genotype RR Rr rr
Count 49 42 9

What is the frequency of the R allele?

AALBORG PAGE
27
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«

YOUR TURN

In a random sample of 100 individuals, we observe whether they can R = can roll tongue
roll their tongue or not. r = cannot roll tongue

Genotype RR Rr rr
Count 49 42 9

AALBORG PAGE
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THE ACCURACY OF FREQUENCIES

The accuracy of allele frequencies can be determined from their variances
- which are equal sincep = 1 — g

_ a2
Variance of p: Var(p) = p(;\,q) T PAng
p(1-q)

Variance of p: Var(p) =

, if there are Hardy-Weinberg proportion (see later)
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EXAMPLE

Genotype AA Aa aa Sum
Number 10 40 49 99 N
Jaera ischiosetosa
Frequency 0.101 0.404 0.495 1
Allele frequency of A: p = zlef;m = 0.303
Allele frequency of a: q = ZX::;:O = 0.697

0.303(1—0.303) = 0.101—0.3032
= 0.00111
2X99 2X99

The variance of the allele frequency A: Var(p) =

The standard deviation of the allele frequency A: sd(p) = v0.00111 = 0.033

Assuming Gaussian distribution the 95% confidence interval is: estimate +1.96 X sd

> 0.303 [0.238-0.368]
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11:45-12:00 Reflection

population genomics

‘equencies]

'esP




OUTLINE

09:30 — 09:50
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Lecture 2 [Hardy-Weinberg]



HARDY-WEINBERG LAW

So far, we have computed allele frequencies by counting genotypes

Genotype frequencies - Allele frequencies

Under certain conditions, we can compute genotype frequencies in the next generation

Allele frequencies—> Genotype frequencies

However, that requires some assumptions.



THE NEUTRAL POPULATION

©® Random mating

® No selection

© No genetic drift (infinite population size)
© No migration

© No mutation

Hardy-Weinberg principal describes the relationship allele- and
genotype frequencies in the neutral population



HARDY-WEINBERG LAW

AA | Aa |aa
PAA PAa Paa

Known population parameters

Using HW

What is the frequency in the next generation? principle

Males
AA Aa aa
AA| Pis |PaaPaa | PaaPaa
Aa |PaaPan| Piy | PaaPaa

aa Paa PAA Paa PAa Paza

Females




HARDY-WEINBERG EQUILIBRIUM

Genotypes of offspring A a

Parental Frequency AA Aa aa A AA Aa
combinations A AA Aa

AA x AA PZA PZA

AAXAa |2 XPaaPas | PaaPaa | PapPaa

AA X aa 2 X PpaaPya 2 X PpaaPys

Aa x Aa Pz, 1/4PZ, | 1/2P%, | 1/4PZ, A a

Aaxaa |2xPyP., Pr.P.. | PauPis \ A AA An

Aa x aa PZ, PZ, a A o




HARDY-WEINBERG EQUILIBRIUM

Genotypes of offsprrg——"> Z AA = P2, + PppPay + 1/4PZ,
Parental Frequency AA aa 5 5
combinations A\ = (Paa +1/2Ppa)" =p
2 2
AA X AA PAa PAa \\ Z aa = P2, + P, Py, + 1/4 P2,
AA X Aa 2 X PAAPAa PAAPAa PAAPAa 5 )
= (P, +1/2P =
AAXaa |2 xPusP., 2 X PoaPas AN (Paa +1/2Pxa)" = q
2 2 2 2
Aax Aa PR, |1/4P% | 1/2P% [ 1/4PE N, > Aa = PaPag + 2PaaPag +1/2PF, + PagPag
Aa X aa 2 X PAaPaa PAaPaa PAaPaa
= 2(Pap +1/2P P,, +1/2P
Aa x aa PZ P2 = 2(Pan +1/2Ppa) (Paa + 1/2Ppa)
= 2pq
2Nap + N Nap +1/2N 2N,, + N N,, +1/2N
p = AAZN Aa _ AA N/ Aa _ PAA + 1/2PAa g = aaZN Aa __aa N/ Aa _ Paa + 1/2PAa

( AALBORG PAGE
UNIVERSITY 37



HARDY-WEINBERG EQUILIBRIUM

After one generation under HW assumptions the genotype
frequencies will be in equilibrium:

Genotype AA Aa aa
Frequency p? 2pq q

Allele frequencies do not change!

Males
A) | alq)
o | A(p) | p° pq
T
E| a(@ | pq q’
LL
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[ESTING H-W PROPORTIONS

Genotype AA Aa aa
Observed Naa Naa N.a
Expected Eap = p°N  Eaa =2pgN  E,, = g°N
General = 2 alleles
- (Obs — Exp)?
2 (NAA_EAA)2 (NAa_EAa)2 (Naa_Eaa)z )(2 = Z 4
X = T+ + _ Exp
Eaa Eaa Eaa i=1

P-value is obtained from y“-distribution and degrees of freedom (df):

df = n("z_l), n= number of alleles

( AALBORG PAGE
UNIVERSITY 39
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HIV-1 is the virus giving AIDS.
Being homozygote for the CCR5 mutation
E XA M P L E A32 protects against HIV-1 virus, whereas
HIV-1 heterozygotes are susceptible, and the
disease progress slowly.

Genotype 1/1 1/A32 A32/A32 )X
Observed 79 20 1 100
Expected p*N 2pgN q*N N
C . 2X79+20
Allele frequency of 1: p = 100 = 0.89
. 2X1+420
Allele frequency of A32: q = <100 = 0.11
0.89% x 100 2x%0.89x%x0.11x 100 0.11% x 100
Expected =79.21 = 19.58 =1.21 100
(79 —79.21)> (20-19.58)? (1 -—1.21)2 This population
2 = = 0046 € — ¢
X 7921+ 1958 121 s in HW
proportions, .

UNIVERSITY



EXAMPLE

HIV-1

NAA <- 79
NAa <- 20

Naa <- 1
N <- NAA+NAa+Naa

p <- (2*NAA+NAa)/(2*N)
q <- (2*Naa+NAa)/(2*N)

EAA <- pAZ2*N
EAa <- 2*p*g*N
Eaa <- gAZ2*N

X <- (NAA-EAAMA2/EAA + (NAa-EAa)A2/EAa + (Naa-Eaa)A2/Eaa
pchisq(g=X, df=1, lower.tail=FALSE)
1] 0.8301536

VY VVVVVVVYVVVYVYVY
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Normal Airway:
In healthy lungs, the

YOUR TURN

Cystic fibrosis (CF) is a hereditary autosomal recessive disease, ya kb
that, among other things, affects the lungs causing
chronic/frequent lung infections.

In Europe, the prevalence of children born with cystic fibrosis (CF)
IS approximately 1/2500.

What is the frequency of the CF-allele?

Assume Hardy-Weinberg proportions.

( AALBORG PAGE
UNIVERSITY 42



Normal Airway:
In healthy lungs, the

YOUR TURN

~
.y
=
¥ A "8y
R O L L i »

=3 FoamTT

Cystic fibrosis (CF) is a hereditary autosomal recessive disease, 27 [ -

thick, sticky mucus
blocks the airway.

that, among other things, affects the lungs causing
chronic/frequent lung infections.

In Europe, the prevalence of children born with cystic fibrosis (CF)
IS approximately 1/2500.

( AALBORG PAGE
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Normal Airway:
In healthy lungs, the
airway is lined with

YOUR TURN AGAIN

Cystic fibrosis (CF) is a hereditary autosomal recessive disease, ya kb
that, among other things, affects the lungs causing
chronic/frequent lung infections.

In Europe, the prevalence of children born with cystic fibrosis (CF)
IS approximately 1/2500.

What is the frequency of healthy CF-carriers?

( AALBORG PAGE
UNIVERSITY 44



Normal Airway:
In healthy lungs, the
airway is lined with

YOUR TURN AGAIN

Cystic fibrosis (CF) is a hereditary autosomal recessive disease, ya kb
that, among other things, affects the lungs causing
chronic/frequent lung infections.

In Europe, the prevalence of children born with cystic fibrosis (CF)
IS approximately 1/2500.

( AALBORG PAGE
UNIVERSITY 45



HARDY-WEINBERG PROPORTIONS

>2 ALLES

AAAAAAA
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Females

Males
A1 (Py) Az (P2) Az (Ps)
A1 (PY) | AdAL (P2 | A1Ar (P1P2) | A1As (P1Ps)
Az (P2) | A2A1L (P2P1) | AAZ (P27) | AXAs (P2P3)

As (P3)

AsA; (P3p1)

AsA; (P3P2)

AzAz (P3?)




HARDY-WEINBERG PROPORTIONS

>2 ALLES

Genotype frequencies after random mating:

AjA;: py? AA;: 2p.p,
AyA;: py° AiAz: 2p1D3
AzA3z: ps® AyAz: 2D,D3

_ _ P1(P1tP2tP3)=P1(P1+(1-P1-P3)tP3)
Allele frequencies after random mating: /
p, = p;* + 0.5 X 2p;p, + 0.5 X 2p;p3 = p1(p; + P2 + P3) = p1
p; = p;* + 0.5 X 2p;p, + 0.5 X 2p,p3 = p1(p; + P2 + P3) = D>
p3 = p3* + 0.5 X 2p;p3 + 0.5 X 2p,p3 = p1(p; + P2 + P3) = DPs3

( AALBORG PAGE
UNIVERSITY 47
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HARDY-WEINBERG PROPORTIONS

>2 ALLES

One locus with tre co-dominante alleles; A;, A, og A;

AALBORG
UNIVERSITY

Genotypes AA, A A, AA;

Observed 51 56 76
2X51+56+76

P1 =" 324
2X2456+34

P2 =534
2x15+76+34

Ps =324

Expected 58.5 46.8 70.2

Ahr ARz AdhAg 2
2 34 15 234

9.36 28.08 21.06 234

x2 = OPsTEBR = 12,028, df = .

nn-1) _

33-1) _ _ Deviation from HW
2 3, p=0.0072 4_\ proportions

PAGE
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VARIATION IN SEX-LINKED LOCI

When allele frequencies are THE SAME between males and females

Males

Xa (P) Xa (q) Y (1)

Xa (@) | XaXa (P?) XaXa (PQ) XAY (P)

Females

Xa (q) ><aXA (qp) Xaxa (qZ) ><aY (q)

... then, the genotype frequency for males is the allele frequency.

AAAAAAA
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VARIATION IN SEX-LINKED LOCI: > e

Q o O

When allele frequencies are DIFFERENT between males and females

00 - O

I I I I I I I I I I I
0 1 2 3 4 5 6 7 8 9 10

Males
Xa (p™) Xa (q™) Y (1)
Xa (PF) | XaXa (PP™) | XaXa (P'™) | XAY (P

><a (qf) XaXA (qum) ><axa (qfqm) XaY (qf)

Generation

Females

At equlibrium: p=(p™+p"H/3

AAAAAAA
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08:50 — 09:30 [e3, E4, E6]
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10:30 - 10:50  Lecture 3 [Modulation of genetic variation]

10:50 — 11:45 Break + Exercises Part 3 [e1
11:45-12:00 Reflection




OUTLINE

10:30 -10:50
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Lecture 3 [Modulation of genetic variation]



THE NEUTRAL POPULATION?

The constancy of allele frequencies from generation to generation
only holds under the assumptions of HW-law.

© Random mating

© No selection Does the neutral

©® No genetic drift (infinite population size) population exists
©® No migration f)

© No mutation



THE NEUTRAL
P O P U L AT | O N Assortitative mating

Isolation by distance

- Inbreeding
©® Random mating -
© No selection Y
© No genetic drift (infinite population size)
© No migration
© No mutation

AAAAAAA
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e 4

P1
(Inbred line #1) {Inbred line #2)

© Mating between relatives
©® Heterosis | Hybrid vigor
F1

INBREEDING %I}\ X



«

Philip of Castile Joanna of Castile

( 478-l1 506) (1 4719-] 555)
]
INBREEDING i efis '
: Ferdinand |, Holy Anna of Bohemia sapella of  Christian II
Portugal ~ Roman Emperor _ Roman Empero?! and Hungary Burgundy of Denmark
(1503-39)  (1500-58)  |st Cousins (1503-64) (1503-47) 2nd Cousins  (1501-26)  (1481-1559)
Philip lllof Spain M f sl i Maxi '|'I 11. Hol Ch :1 i Anrl\e of Albert V. Duk Christina of g is I. Duk
ana of Spain aximilian Il, Holy arles , Duke rancis |, Duke
(1527-98) (1528-1 5%3) Roman Emperor of Austria Habsburg ~ of Bavaria Denmark of Lorraine
(1527-76) (1540-90) (1528-90) (1528-79) (1522-90) (1517-45)
Uncle _— ] Uncle
. : 1
A"(';es :; ‘;:ft”a N'ecehg?réi Anna  Wiliam V. Duke |  Renata of
. . - of Bavaria orraine
O Mati ng between relatives I (a 53-‘608) (1548.1626)  (1544-1602)
© Heterosis | Hyb rid vigor Philip Ill of spain 2nd Cousins ~ Margarita of Ferdinand Ii, Holy Maria Anna
(1578-1621) . SA;:T:H Roman Emperor. of Bavaria
. . ( - ) (1578-1637)  1st Cousins (1574-1616)
© Inbreeding depression | i i
> Accumulation of deleterious recessive alleles Philip IV of spain Maria Anna Ferdinand lil, Holy
(1605-65) a 60(?— 46) . Roman Emperor
1st Cousins (1608-57)
Uncle 1 .
Manana of
Austria
: (1634-96)
Niece 1

]
Charles Il of Spain
(1661-1700)

AALBORG
UNIVERSITY




THE INBREEDING COEFFICIENT

The inbreeding coefficient (F) is the probability that two alleles in
an individual trace back to the same copy in a common ancestor.

Male

Female

\ Male

ldentical by state (IBS)
VS
[dentical by descent (IBD) 2 %

AAAAAAA
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Male



THE INBREEDING COEFFICIENT

Follow the transmission of alleles.

/~
OO o0 OO
Y

1 n
Fp = <E> (1+ Fy)

where n is the number of individuals in
the loop without the individual we are
computed F for.

1 3

AAAAAAA
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What is the inbreeding coefficient for individual X
assuming individual A 'is not inbred (F, = 0)?

AAAAAAA
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YOUR TURN

What is the inbreeding coefficient for individual X
assuming individual A 'is not inbred (F, = 0)?

1\° 1\°
FX=<§> (1+0)=(§) — 0.031




WHEN THERE ARE MULTIPLE
ANCESTORS

Follow the transmission of alleles over
@ O Q multiple loops.

QO OO O &zl
O O

AAAAAAA
IIIIIIIIII



INBREEDING

CHANGES GENOTYPE FREQUENCIES

Children of unrelated parents

If the population is in HW proportions . Children of first cousins
Genotype AA Aa aa 16 g oy
Frequency p’ 2pq q°

g -,
e 1 ;
£ |
If there is inbreeding 8 1|
s |
Genotype AA Aa aa & °)
Frequency p?+pgF  2pg-2pgF  q%+pgF  § e

BN

Results in excess in homozygotes

B
;
. B
0 | 5 A

} United States France Sweden Japan Average

( AALBORG PAGE
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NORMAL B-GLOBIN

TGA
THE NEUTRAL ACU
POPULATION
©®© Random mating
® No selection TGA
ACU
® No genetic drift (infinite population size)
©® No migration
o

AALBORG
UNIVERSITY

GGA
CCU

GGA
ccu

CAC
GUG




THE NEUTRAL
POPULATION ——

£ 0-0.51

/3 0.52-2.02
£ 2.03-4.04

. 3 4.05-6.06
Random mating == 6.07 - 8.08
= 8.09-9.60
. 9.61-11.11
m 11.12-12.63
BN 12.64 — 14.65

No genetic drift (infinite population size) = 14.66 - 18.18

No migration c

No mutation

Malaria endemicity
il 1 Malaria free
5% U Epidemic
| I Hypoendemic
0.05 - B Mesoendemic
B Hyperendemic

0.00 —
- Holoendemic

o

HbS allele frequency

Malaria free Epidemic Hypoendemic Mesoendemic Hyperendemic Holoendemic
n=328,662 n=64,252 n=155,146 n=143,998 n=168,576 n=101,344



«

MUTATION AND SELECTION a*>a

Number wildtype alleles in a population of 2N is 2Np, which with the raten u mutates to harmfull allele.

In the next generation the proportion of new harmfull alleles are: Aq, = 2Npu

Genotype a‘ta*

Recessive harmfull Aq, = 2Nsq* Fitness 1
B
1 S
I — 2
Dominant harmfull Aq, = Ns2pq + 2Nsq Genotype a‘ta*
q= K Fithess 1
S

AALBORG
UNIVERSITY
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THE NEUTRAL
POPULATION

Random mating
No selection

No genetic drift (infinite population size)

No mutation

== == 3lternative route W possible location of admixture with Neanderthals

kya 1,000 years ago possible location of admixture with Denisovans

({‘ 3 l‘: ILVBEORRSlT TY




Genetic drift is changes in allele frequencies
T H E N E U T RA L between generations due to sampling error
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Genetic drift is changes in allele frequencies
T H E N E U T RA L between generations due to sampling error
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GENETIC DRIFT AND INBREEDING

Genetic drift entails loci in a sub-population becomes fixed, thus, the degree of homozygosity increases
(thus, F increase).

The probability of selecting two gametes carrying the same allele is 1/(2N).

If there is inbreeding

) ) _ _ ] Genotype AA Aa aa
The degree of inbreeding increase with time Fraquency p2+pqF  2pq-2pqF  qZ+pqF
1
Fy = 1- (1 - ﬁ)t Results in excess in homozygotes

The rate of loss of heterozygosity (A) per generation

H = (1- ﬁ)tHO, the rate depend on N
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MODULATION OF FREQUENCIES

Mutation introduces new alleles
diversity within populations

Migration introduces new alleles
diversity within populations
diversity between populations

Genetic drift loss of alleles
diversity within populations
diversity between populations

Selection removes harmfull alles
diversity within populations
diversity between populations

Non-random mating do not change alleles, but change genotype frequencies
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